Developed by JoomVision.com
 

Лямбда зонд проверка работоспособности


Mitsubishi Pajero Sport "PATTAYA" › Бортжурнал › Самостоятельная проверка кислородного датчика

Многие сталкиваются с ошибками, которые связаны с кислородными датчиками, но ошибка конкретно на кислородный датчик не указывает. Но все же может быть проблема в первом/верхнем кислородном датчике. Как же проверить работоспособность датчика?

Чтобы проверить работоспособность первого/верхнего кислородного датчика, нужны: трезвый взгляд и тестер с вольтметром и омметром.

Внешняя проверка трезвым взглядом кислородного датчика
Вначале осматриваем внешне проводку на выявление оплавления, обрыва или замыкания контактов.

Если при осмотре все нормально, продолжаем. Выкручиваем датчик (за левым или правим колесом) и осматриваем его на наличие отложений.

Наличие сажи может быть вызвано богатой смесью, износом двигателя и клапанов или утечки в выхлопной системе, и из-за копоти, закрывающей отверстия защитной трубки датчика, датчик работает не верно, и посылает некорректные сигналы на БУ.

Сильные белые или серые отложения говорят о применении в топливе присадок или содержание в топливе высокого процента свинца, что выводит датчик из строя.

Если внешний осмотр не выявил никаких негативных признаков, продолжаем проверку.

Проверка сигнального напряжения кислородного датчика
Устанавливаем на место датчик. Находим место соединения колодки разъема датчика и разъема общего жгута (сзади двигателя по середине возле салонной перегородки) На колодке разъема кислородного датчика есть 4 контакта:
клемма 1 – сигнал +;
клемма 2 – масса;
клемма 3 – подогрев;
клемма 4 – подогрев.

С обратной стороны колодки разъема (где входят провода в разъем) кислородного датчика вставляем разогнутую скрепку в гнездо с клеммой №1 (сигнал +) и еще одну скрепку вставляем в гнездо с клеммой №2 (масса). Берем вольтметр. Положительный щуп вольтметра подсоединяем к скрепке с клеммой №1 (сигнал +), а отрицательный щуп вольтметра подсоединяем к скрепке с клеммой №2 (масса).

Проверку проводим на авто с АКПП в положении «Р», на авто с МКПП в нейтральном положении. Заводим авто и отслеживаем изменение сигнального напряжения датчика.
В начале датчик выдает сигнал с постоянной амплитудой 0,1 – 0,2 В, так называемый режим разомкнутого контура. Когда двигатель достигает нормальной рабочей температуры показания датчика на вольтметре должны колебаться в пределах 0,1 – 0,9 В, режим замкнутого контура. Если показания не переходят в режим замкнутого контура или же переходят но с большой задержкой, то есть двигатель нагрелся, а показания все равно 0,1 — 0,2 В, то датчик неисправен.

Проверка нагревателя кислородного датчика
Рассоединяем разъем колодки датчика от разъема общего жгута. Подключаем омметр на клеммы нагревателя №3 и №4. Номинальное сопротивление должно быть в диапазоне 10 — 40 Ом.

Проверка питания на нагреватель датчика
Включаем зажигание, не запускаем двигатель. Рассоединяем разъем колодки датчика от разъема общего жгута. Измеряем напряжение со стороны жгута. Положительный щуп вольтметра на клемму №4, а отрицательный щуп на клемму №2 (масса), на приборе должно показывать напряжение АКБ, в случае отсутствия питания проверяем состояние электропроводки.

При отрицательном результате в вышеперечисленных проверках, за исключением последнего пункта, кислородный датчик требует замены. Замену можно делать как на оригинальный так и сэкономив средства на более дешевый заменитель ничем не хуже в работоспособности оригинала что уже было описано тут.

www.drive2.ru

Как проверить лямбда-зонд на работоспособность

Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.

Содержание статьи:

Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.

Зачем в автомобиле нужен лямбда-зонда, место расположения

Лямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь.

Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.

Читайте также: Почему горит ЧЕК в машине, что делать, можно ли ехать и как его потушить

Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива.

Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики.

На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется.

Принцип работы кислородного датчика

Принцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания.

Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется.

ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию.

В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать.

Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.

Статья по теме: Как сделать пеногенератор для автомойки из подручных вещей своими руками

Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана.

Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере.

Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур.

Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов.

Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась.

Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля.

Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.

Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Это интересно: Как восстановить кожу на руле автомобиля методом покраски

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

  • Повреждения, вызванные сильными ударами, ДТП, наездами на бордюр;
  • Некорректную работу ДВС и проблемы в работе системы зажигания, когда элемент перегревается и выходит из строя;
  • Засор системы и некачественное топливо. Чем больше в бензине тяжелых металлов, тем быстрее лямбда выйдет из строя;
  • Поршневая группа – часто из-за изношенной ЦПГ в выпускной коллектор попадает масло, а продукты его сгорания забивают зонд;
  • Замыкания в электропроводке;
  • Бедная или слишком богатая смесь;
  • Попадание лишнего воздуха в выхлопную систему;
  • Пропуски зажигания;
  • Топливные присадки.

Как проверить лямбда-зонд мультиметром

Когда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.

К сведению: Стук в Двигателе все причины появления странных звуков при работе мотора

Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить.

Измерения напряжения в цепи подогрева

Включают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть.

Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика.

Проверка нагревателя

Можно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней.

Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке.

Опорное напряжение

Имея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой.

В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса.

Проверка сигнала с датчика осциллографом

Двигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.

По теме: Как нумеруются цилиндры, виды их расположения в двигателе

Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику.

Ошибки лямбда-зонд в бортовой системе автомобиля

В большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Достаточно подключить диагностическое оборудование и считать коды неисправностей.

Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже.

Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем.

autovogdenie.ru

Живой еще или уже не живой? Датчик лямбда зонд. — Hyundai Accent, 1.5 л., 2006 года на DRIVE2

Озадачился я возросшим расходом бензина.
Ездил в Беларусь 500 км и потратил 45л, расход 9л и это по трассе. Ну то что уже что то не так я понял. Проверив в принципе все датчики и прозвонив их, оказалось что датчик лямбда зонда (далее датчик кислорода просто ДК) очень неадекватно реагирует. Все далее и подробно опишу.

Фото ДК 4 провода для представления

На моем автомобиле используется ДК на 4 провода, 2 белых подогревателя датчика, черный — сигнальный, серый — масса датчика.

2х, 3х и 4х проводные датчики

4-х проводный датчик

Лямбда зонд: проверка.

Чтобы проверить работоспособность кислородного датчика, вам потребуются: заводская инструкция, которая подскажет, где находится лямбда зонд, и цифровой вольтметр. Это основные вспомогательные инструменты. Двигатель на время проверки прибора следует прогреть.
1. Далее проверяем сопротивление на проводах подогревателей ДК. При положенных 2-10 Ом у меня

Сопротивление между 2 проводами подогревателя ДК

Уже вроде что то не так. Ладно идем далее, скидываю видео по замеру напряжения. Минус берем с корпуса авто (я даже пробовал и брал с минуса АКБ) а плюс подключаем к черному провода и выставляем напряжение. Вот что получилось
Попытка №1


Попытка №2

Upd: Небольшая мини инструкция.
Для проверки датчика кислорода (лямбда зонд) подсоедините отрицательный провод щупа мультиметра к корпусу двигателя. Определите контакты на датчике кислорода. Как я уже говорил, проводов может быть от одного до четырех. Подключите положительный вывод щупа мультиметра к сигнальному проводу датчика кислорода. Прогрейте двигатель до нормальной температуры. Разгоните двигатель до 2500-3000 об/мин на 3 минуты, чтобы разогреть датчик кислорода. Дайте двигателю работать на повышенных оборотах и проверьте включение датчика кислорода. Напряжение на датчике должно иметь величину от 0,2 до 1 вольта и включаться с частотой 8-10 раз за 10 секунд. Если напряжение примерно равно 0,45 вольт и не меняется, то датчик кислорода попросту не работает.
При помощи тестера проверьте наличие напряжения аккумулятора на фишке питания нагревателя датчика кислорода. Если напряжение отсутствует, то проверьте провода идущие к реле или к выключателю зажигания. Проверьте также соединение с заземлением нагревателя лямбда зонда.
— При исправном и прогретом датчике кислорода напряжение на сигнальном выводе должно меняться от 0,2 до 1 вольта с частотой 8-10 раз за 10 секунд (1Гц) при оборотах двигателя 2500 об/мин.
— При резком открытии дроссельной заслонки мультиметр должен показать напряжение 1 вольт.
— При резком закрытии дроссельной заслонки показать напряжение около нуля. На этом процедуру проверки лямбда зонда можно считать оконченной.

Из всего выше изложенного я подозреваю пока еще что датчик мертв. Ваши мнения и комментарии жду. М.б. специалисты есть среди нас и подскажут. Или выкладывайте свои измерения, будем сравнивать, желательно с фото и видеофиксацией)))

Upd: небольшой пример — тап живучести и умирания датчика.

Полный размер


Upd2: видео зависания подыхания датчика


www.drive2.ru

Как проверить лямбда зонд? (решено) — 2 ответа

Перво-наперво при выходе из строя и неисправности лябды в поведении авто появляются несколько ощутимых последствий:

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

Исключения:

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.  

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

etlib.ru

Как проверить лямбда зонд на работоспособность: диагностика мультиметром и тестером

«Начинка» современных автомобилей содержит множество датчиков, которые призваны контролировать исправность различных систем и агрегатов. Одним из главных помощников водителя является лямбда-зонд. Но иногда он тоже способен выходить из строя. Не все автолюбители знают, как проверить лямбда-зонд своими руками и серьёзно сэкономить на походах в автосервис.

Лямбда зонд: что такое и где находится

Лямбда зонд (ƛ зонд) – датчик, который замеряет объём кислорода в выхлопных газах и сравнивает со стандартом. Иными словами, это кислородный датчик. Если показатели его не устраивают, он подаёт сигнал в блок управления.

Место нахождения зависит от числа датчиков в машине. Так, в ТС, выпущенных до 2000 года, чаще всего стоит один. В более поздних моделях — от 2 датчиков. Первый всегда находится под капотом, второй (если он есть) – под днищем машины.

Как работает датчик

Выхлопные газы проходят сквозь датчик, а внутрь него поступает чистый воздух из атмосферы. Из-за разной окислительной способности чистого воздуха и отработавших газов появляется разность потенциалов. Эти показания и отправляются в ЭБУ.

Внутри датчика спрятаны токопроводящий элемент, электроды, сигнальный контакт и заземление. Вся эта система начинает работать только после прогрева до 300–400 oC. Только при такой температуре твёрдый электролит способен проводить электричество.

Схема работы

Виды кислородных датчиков

Современные ТС оснащаются тремя видами датчиков.

Циркониевый. Одна из самых популярных моделей, основной элемент в составе — диоксид циркония. Наконечник керамический, начинает работать только при нагреве до 350 oC. Быстро разогревается за счёт вмонтированной нагревательной детали с керамическим изолятором.

Такие датчики делятся на 1, 2, 3 и 4 проводные.

Титановый. Наконечник устройства изготовлен из диоксида титана. Внешне датчик мало отличается от циркониевого, но работать начинает только при температуре от 700 oC. Из-за сложной конструкции, высокой стоимости и излишней чувствительности к температурным перепадам такие датчики редко используются.

Широкополосный. В отличие от предыдущих моделей, у этого датчика имеются две ячейки:

  1. Измерительная. Благодаря электронной схеме модуляции, в составе газов внутри ячейки сохраняется показатель ƛ =1.
  2. Насосная. Если смесь богатая, дополняет состав ионами кислорода из атмосферы, если обеднённая — выводит лишние молекулы кислорода из диффузионного отверстия во внешнюю среду.

Признаки и причины неисправности ƛ-зонда

Лямбда-зонд в процессе эксплуатации авто может выйти из строя. Чаще всего датчик ломается из-за некачественного топлива, попадания топлива или масла внутрь, или неполадок в системе подачи горючего.

О неисправности лямбда-зонда могут говорить следующие признаки:

  • обороты растут до максимума, после чего резко выключается мотор;
  • обороты на холостом ходу становятся нестабильными;
  • мощность существенно падает при повышении оборотов;
  • электронный блок выдаёт ошибку из-за поздней подачи сигнала с ƛ-датчика;
  • машина едет рывками.

Чтобы вернуть датчику работоспособность, его необходимо вынуть и правильно очистить. Для этого снимают керамическую головку и убирают загрязнения тряпкой с химическим средством. Если и это не помогает, датчик придётся менять.

Как проверить лямбда-зонд на работоспособность

Существует несколько способов проверить лямбда-зонд на исправность. Самый простой и поверхностный — тщательный осмотр устройства, самый сложный — диагностика при помощи специального оборудования.

Внешний осмотр датчика

Итак, внешнее изучение кислородного датчика будет состоять из нескольких шагов:

  1. Проверить внешнюю часть, которая находится вне катализатора. Не должно быть оплавленных участков, обрывов или замкнутых контактов.
  2. Выкрутить датчик из катализатора и изучить нижнюю часть, обычно спрятанную в катализаторе. Пятна сажи на ней говорят о том, что топливо слишком концентрировано, двигатель и клапаны близки к износу или в выхлопной системе произошла утечка. Отложения серого цвета сигнализируют о высоком содержании свинца в топливе.

Проверка лямбда-зонда мультиметром (тестером)

Потребуется вольтметр, омметр или мультиметр, в котором объединяются оба эти устройства. Если используется последний, его нужно перевести в режим замера сопротивления. Чтобы испытать нагреватель датчика, необходимо:

  1. Вывести из колодки датчика контакты 3 и 4 разъёма (стандартно это белый и коричневый провода).
  2. Подсоединить контакты к выходам тестера и измерить сопротивление.

Показатели могут быть разными, обычно они варьируются в пределах 2–10 Ом. Цифра более 5 Ом говорит об отличной работоспособности датчика. Если сопротивление вообще не выводится на дисплей, это говорит о том, что в нагревателе лямбда-зонда порвался провод и требуется немедленная замена.

Прогрев зонда

Кроме того, мультиметром можно проверить восприимчивость наконечника кислородного датчика. Для этого нужно завести машину и прогреть мотор до 70–80oC. Последующий алгоритм будет таким:

  1. Довести мотор до 3000 оборотов в минуту и зафиксировать этот показатель на 2–3 минуты, пока датчик не прогреется.
  2. Минусовой щуп мультиметра подсоединить к массе машины, другой состыковать с выходом датчика.
  3. Изучить данные на тестере: они должны варьироваться от 0,2 до 1 В и меняться 10 раз в секунду.
  4. Надавить педаль газа в пол и резко отпустить её. Исправный датчик выдаст значение в 1 В, после чего резко упадёт до ноля. Если цифры на дисплее не меняются при действиях с педалью и показывают 0,4–0,5 В, датчик требует замены.

Если напряжения нет вовсе, стоит проверить проводку. Для этого нужно «прощупать» мультиметром все провода, соединяющие реле с выключателем зажигания.

Проверка осциллографом

Диагностика осциллографом будет более продуктивной, поскольку в этом случае можно зафиксировать промежуток времени, за которое меняется выходное напряжение. Нормальными считаются показатели ниже 120 мСек.

Итак, алгоритм проверки будет таким:

  1. Найти сигнальный провод датчика и подключить к нему осциллограф. Затем нужно завести мотор и разогреть его до 60–70oC. Это нужно, чтобы прогреть датчик воздуха и дождаться от него обратной связи. В процессе подготовки на осциллографе уже появится сигнал о генерации небольшого тока (до 1 В).
  2. Когда начнёт прогреваться лямбда-датчик, напряжение ещё немного вырастет. По мере прогрева до 300–400oC диаграмма приобретёт динамику.
  3. Если на прогретом двигателе дойти до 2500–3000 оборотов, исправный датчик должен показать такую картину:
  4. Если резко отпустить газ, смесь переходит в режим обогащения, а лямбда откликается таким образом:

В процессе проверки важно засечь, через какое время датчик переходит в рабочий режим, то есть когда на диаграмме появляется динамика. Также анализируется реакция на работу двигателя на 2000–3000 оборотов в минуту. Если после прогрева сигнал стабильно находится только в нижнем или только в верхнем положении, датчик придётся менять. Если сигнал напоминает плавную извилистую линию, как на картинке ниже, датчик сгорел или вышел из строя.

Проверка бортовой системой

Если в машине имеется ЭБУ, поиск неполадок можно существенно облегчить. Стоит обратить внимание на индикатор «Check Engine», который нередко предупреждает о проблемах с лямбда-зондом. Чтобы уточнить причину сигнала, достаточно подключить к бортовому компьютеру автосканер.

К кислородному датчику будут относиться ошибки:

  • P0130: датчик отправляет неверные данные;
  • P0131: сигнал слишком слабый;
  • P0132: сигнал слишком сильный;
  • P0133: КД медленно реагирует;
  • P0134: датчик вообще не даёт сигнала;
  • P0135: нагреватель первого датчика не функционирует;
  • P0136: произошло замыкание второго датчика;
  • P0137: КД2 медленно реагирует;
  • P0138: КД2 слишком быстро реагирует;
  • P0140: разрыв в цепи КД2;
  • P0141: нагреватель второго датчика неисправен;
  • P1102: слабое сопротивление нагревателя КД;
  • P1115: цепь повреждена, считать данные невозможно.

Видео: как проверить работоспособность лямбда-зонда

Проверять исправность лямбда-зонда нужно регулярно, особенно если пробег машины перевалил за 50 000 км. Очень часто признаки выхода датчика из строя схожи с более серьёзными поломками. Вместо того, чтобы выискивать проблему в двигателе или электронике, порой достаточно поверхностно осмотреть лямбда-датчик.

dispetcher-gruzoperevozok.biz

4 способа проверки лямбда зонда в домашних условиях

Как проверить лямбда зонт самостоятельно? С этим вопросом сталкиваются большое количество владельцев автомобилей как отечественного производства, так и иномарок. В сегодняшней статье я расскажу вам о четырех полноценных способах проверки датчиков кислорода. Кстати проверка этих датчиков может потребоваться если сканер показывает ошибку, связанную с лямбда зондом, например низкий уровень сигнала датчика кислорода или увеличился расход топлива.

Лямбда зонт или датчик остаточного кислорода (например, в выпускном коллекторе двигателя или дымоходе отопительного котла). Позволяет оценивать количество оставшегося не сгоревшего топлива либо кислорода в выхлопных газах. Данные показания позволяют приготовлять оптимальную воздушно-топливную смесь, а также снижать количество вредных для человека побочных продуктов процесса сгорания.

Датчики лямбда зонда – какие бывают?

Современные датчики кислорода имеют 4-х проводную систему, но бывают исключения! Нередко встречаются одно, двух и трех проводные датчики лямбда зонд.

Современные датчики кислорода

У четырехпроводного датчика два провода идут на цепь подогрева и один провод – сигнальный. Также один провод идёт на массу проверки лямбда зонда, которую можно произвести самостоятельно.

Проверка напряжения в цепи подогрева датчика

Принято считать, что оптимальное напряжение в цепи подогрева датчика кислорода равняется 12,45В.

Для проверки напряжения в цепи подогрева датчика кислорода нам понадобится вольтметр.

  1. Включаем зажигание автомобиля
  2. Острыми щупами протыкаем провода или втыкаем щупы от вольтметра в разъемы провода идущий на датчик кислорода.
  3. Замеряем напряжение.

Напряжение на этих проводах должно равняться напряжению аккумуляторной батареи, примерно 12, 45В. Плюс приходит обычно приходит на нагреватели датчика кислорода напрямую через предохранители, а минус подается с блока управления двигателем. Поэтому если на нагреватель датчика кислорода не приходит плюс, то смотрите цепь, аккумулятор, предохранитель и датчик кислорода. Кстати в некоторых моделях автомобиля возможно наличие реле в этой цепи. Но если нет минуса, то смотрите всю цепь до блока управления. Возможно потерялся контакт в каком либо разъеме, либо блок управления по каким то причинам не видит минус.

Проверка исправности нагревателя лямбда зонда при помощи тестера

Для того, чтобы проверить сам нагреватель лямбда зонда путем замера сопротивления нам понадобиться Омметр, то есть тестер или мультиметр в режиме измерения сопротивления. Отсоедините разъем датчика кислорода и измеряете сопротивление между проводами нагревателя. Сопротивление может быть разное, но обычно оно находится в пределах 2-10 Ом. Если сопротивление не показывается вообще, то скорее всего в нагревателе датчика кислорода (лямбда зонда) произошёл обрыв и он требует замены.

Проверка опорного напряжения датчика кислорода (лямбда зонд)

Принято считать, что оптимальное опорное напряжение датчика кислорода равняется 0,45В.

И так первую проверку лямбда зонда, которую мы можем провести самостоятельно, это проверка опорного напряжения. Для этого нам понадобится тестер в режиме Вольтметра. Включаем зажигание и замеряем напряжение между сигнальным проводом и массой. В большинстве моделей автомобилей это напряжение должно равняться 0,45В. Допускаются небольшие отступления от нормы как в ту так и в другую сторону, но здесь уже все зависит от качества и состояния проводки в автомобиле.

Проверка сигнала лямбда зонда

Для проверки нагревателя лямбда зонда желательно иметь осциллограф либо осциллоскоп, но так же подойдет мото-тестер или хотя бы стрелочный, но не цифровой вольтметр. В принципе для данного способа проверки подойдет и цифровой вольтметр, но он более инертный, поэтому намного хуже реагирует на изменение показаний.

И так теперь проверяем сам сигнал лямбда зонда! Это самый сложный и ответственный способ. Первое, что необходимо сделать это обзавестись специальными приборами, которые я перечислил выше.

И так, запускаем двигатель прогреваем его до рабочей температуры. Дело в том, что датчик кислорода начинает работать только после прогрева, не после прогрева ДВС, а после прогрева датчика кислорода. На эту процедуру блоком отводиться определенное время, поэтому проверять сразу датчик кислорода нет никакого смысла.

Обычно, датчик кислорода начинает работать при температуре двигателя 60 – 70 градусов. Подсоединяете провода щупа между сигнальными проводами и проводами массы, поднимаете обороты двигателя примерно до 3000 об/мин, и наблюдаете за изменениями показаний лямбда зонда.

Сигнал с датчика кислорода должен меняться от 0,1 до 0,9 Вольт. Если изменения происходят в меньшем диапазоне, то прибор просто не успевает реагировать, либо датчик кислорода неисправен и требует замены.

Так же при 3000 об/мин засеките время, при котором меняются показания от большего к меньшему. При оптимальном варианте работы ДК за 10 секунд должно произойти 8 – 9 изменений. Если показания датчика изменяются реже, то вероятна ошибка медленный отклик датчика кислорода и он подлежит замене.

Видео: 4 способа проверки датчика кислорода и лямбда зонда

inomarki-remont.ru

Лямбда-зонд, описание, диагностика, проблемы. — DRIVE2

Многие задаются вопросом зачем он вообще нужен, и зачастую наслушавшись безграмотных советов доморощенных *чиптюнеров* стремятся его разными способами удалить из системы. Не буду долго лить всякую теоретическую воду напишу кратко:
-для владельца авто он позволяет экономить бензин как гласит запись из каталога бош (см. рис.) при исправном двигателе, системе управления ну и собственно лямбда зонде (далее ЛЗ) это реальная экономия до 15% топлива, нетрудно посчитать это 1,5 л на 10 л!

-для экологии, ну этот пункт мы пропускаем, ввиду низкой экологической культуры на территории стран бывшего СНГ.
-для нас диагностов, его показания очень важны, так как дают очень много полезной информации о состоянии системы и двигателя в целом, что повышает качество наших выводов.
Описание
Датчики кислорода (см. Рис. 1) сегодня востребованы благодаря постоянно растущим жестким требованиям по токсичности выхлопных газов, и идут рука об руку с каталитическими конвертерами. Один датчик кислорода установлен в выпускном коллекторе непосредственно перед катализатором. Иногда второй датчик устанавливается в выхлопной системе после каталитического конвертера для того, чтобы обеспечить его максимальную эффективность.
Получаемая с датчиков информация, показывает, насколько полно происходит сгорание топлива в камерах двигателя внутреннего сгорания. Оптимальные показания получаются, когда соотношение воздуха к топливу составляет 14.7 : 1. Стехиометрическое соотношение воздух/топливо — это когда на 1 килограмм бензина приходится 14.7 килограмм воздуха, теоретически необходимого для полного сгорания. Фактор избыточного количества воздуха (λ-«лямбда») показывает отношение действительного количества воздуха (в смеси воздух+топливо) к теоретически необходимому. То есть λ = (действительная масса воздуха)/(теоретическая потребность в воздухе).


пояснение к рисунку, заводские сток машины все настраиваются под лямбда =1
спортсмены настраивают под лямбда 0,8-0,9
экономисты всех мастей под лямбда 1,05-1,10
те *чиптюнеры* которые вам пообещают что ваша машина будет валить как болид F1, и в тоже время будет экономной, вас обманывают, так как законы физики и химии никто не отменял!

Рисунок 3. Датчик кислорода в выхлопной трубе
1. Керамическое покрытие
2. Электроды
3. Контакты
4. контакты корпуса
5. Выхлопная труба
6. Керамическая поддерживающая оболочка (пористая)
7. Отработавшие газы
8. Наружный воздух.

Устройство датчика

Датчик кислорода представляет собой гальваническую ячейку (ячейку Нернста) с твёрдым электролитом. В качестве электролита используется газонепроницаемая керамика из диоксида циркония (ZrO2), стабилизированного оксидом иттрия (YO). C одной стороны (снаружи) он сообщается с выхлопными газами, а с другой (изнутри) — с атмосферой. На внешнюю и внутреннюю сторону керамики нанесены газопроницаемые электроды из тонкого слоя платины.
Платиновый электрод на наружной стороне работает как миниатюрный катализатор, поддерживающий в прилегающем слое поступающих выхлопных газов химические реакции, этот слой в состояние стехиометрического равновесия. Сторона чувствительной керамики, обращенная к отработавшим газам, во избежание ее загрязнения покрыта слоем пористой шпинелевой керамики (Шпинель — минералогическое название тетраоксида диалюминия-магния). Металлическая трубка со щелями предохраняет керамику от ударов и чрезмерных тепловых воздействий. Внутренняя полость сообщается с атмосферой и служит в качестве референсной (опорной) стороны датчика.
Работа датчика основана на принципе ячейки Нернста (гальванической ячейки). Керамический материал пропускает ионы кислорода при температурах от 350oC и выше. Разница в количестве кислорода с разных сторон чувствительной зоны датчика приводит к образованию электрического потенциала (напряжения) между этими двумя поверхностями (внутренней и внешней). Величина напряжения служит показателем того, на сколько количество кислорода на этих двух поверхностях различается. А количество остаточного кислорода в выхлопных газах точно соответствует пропорции между топливом и воздухом, поступающими в двигатель.
Широкополосный λ-датчик кислорода

Этот датчик также использует принцип ячейки Нернста, но устроен по-другому. Его конструкция подразумевает наличие двух камер (ячеек): измерительной и так называемой «насосной» (см. Рис. 7). Через маленькое отверстие в стенке насосной ячейки выхлопные газы попадают в измерительную камеру (диффузионную щель) в ячейке Нернста.

Рисунок . Конструкция широкополосного датчика кислорода непрерывного действия, установленного в выхлопной трубе.
1. Ячейка Нернста
2. Референсная ячейка
3. Подогреватель
4. Диффузионная щель
5. Насосная ячейка
6. Выхлопная труба
Эта конфигурация отличается от обычного датчика с двумя состояниями постоянным поддержанием стехиометрического соотношением воздух/топливо в диффузионной камере. Электронная схема модуляции напряжения питания поддерживает в измерительной камере состав газов, соответствующий λ=1. Для этого насосная ячейка при работе двигателя на бедной смеси и избытке кислорода в выхлопных газах удаляет кислород из диффузионной щели во внешнюю среду; а при богатой смеси и недостатке кислорода в выхлопных газах перекачивает ионы кислорода из окружающей среды в диффузионную щель. Направление тока для перекачивания кислорода в разные стороны тоже отличается.
Так как насосный ток пропорционален концентрации кислорода — он и является показателем величины λ-фактора отработавших газов.

Таким образом, если обычные датчики используют напряжение на ячейке Нернста для прямого измерения и определения одного из двух состояний (λ>1 или λ<1), то широкополосные датчики используют специальную схему, управляющую током «накачки» насосной ячейки. Величина этого тока и измеряется как признак содержания избыточного воздуха в выхлопных газах.
Так как работа датчика уже больше не зависит от ступенчасти в работе ячейки Нернста, то коэффициент избыточного воздуха (λ) может быть измерян в широких пределах от 0.7 до 4. Соответственно, контроль двигателя по λ может работать уже во всем спектре значений (а значит и режимов), а не только в одной точке около λ=1
Встроенный нагреватель обеспечивает рабочую температуру не ниже 600C.
Замкнутая петля лямбдарегулирования

Рисунок . Схема замкнутой петли λ-регулирования качества смеси.
1. Датчик массового расхода воздуха
2. Двигатель
3a. Датчик кислорода 1
3b. Датчик кислорода 2
4. Катализатор
5. Форсунки инжектора
6. Электронный Блок Управления
Vv напряжение управления форсунками
Vs напряжение с датчика
Qe Количество впрыскиваемого топлива
Датчик кислорода передает сигнал (напряжение) электронному блоку управления (ЭБУ) двигателем. Этот сигнал используется системой для обогащения или обеднения смеси в соответствии с величиной напряжения с датчика (см. Рис. 8). Таким образом система обогащает бедную смесь, увеличивая количество впрыскиваемого топлива, и обедняет богатую, уменьшая количество топлива.
Диагностика
Лямбда-зонд сравнивает уровень содержания кислорода в выхлопных газах и в окружающем воздухе и представляет результат этого сравнения в форме аналогового сигнала. Применяются двухуровневые зонды, чувствительный элемент которых выполнен из оксида циркония либо из оксида титана, но на их смену приходят широкополосные лямбда-зонды. При условии сгорания стехиометрической топливо-воздушной смеси, напряжение выходного сигнала лямбда-зонда равно 445…450mV.

Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала лямбда-зонда.


осциллограмма напряжения выходного сигнала исправного лямбда-зонда BOSCH.

Двигатель работает на холостом ходу. Частота переключения сигнала составляет ~1,2Hz.

Проверка выходного сигнала датчика Измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно сигнальной «массы» датчика. Сигнальная «масса» двух- и четырёх-проводных лямбда-зондов BOSCH выведена через отдельный провод (провод серого цвета идущий от датчика) на разъём датчика. Сигнальная «масса» одно- и трёх-проводных лямбда-зондов BOSCH соединена с металлическим корпусом датчика и при установке датчика автоматически соединяться с «массой» автомобиля через резьбовое крепление датчика. Выведенная через отдельный провод на разъём датчика сигнальная «масса» лямбда-зонда в большинстве случаев так же соединена с «массой» автомобиля. Встречаются блоки управления двигателем, где провод сигнальной «ма

www.drive2.ru

Диагностика лямбда-зонда. — Audi A6, 2.6 л., 1997 года на DRIVE2

В эти выходные решил проверить лямбда зонды (двигатель ABC 2.6), ничего сложного в проверке нет. Особых причин для проверки не было (ошибок по ВАГКОМ нет, расход в городе 13,5 л.), диагностика проводилась для более полного понимания состояния лямбда зондов.

Из инструмента потребуется мультиметр и осциллограф.

Часть 1 теория или как должно быть.

Почитав различную информацию по устройству, работе и проверке лямбда зондов,
выработал методику проверки.

Вот интересные, на мой взгляд, ссылки по этой теме:

ССЫЛКА №1

ССЫЛКА №2

ССЫЛКА №3

Итак, начнем, на V образном двигателе АВС объемом 2,6л. в каждом из двух выпускных коллекторов до катализатора стоит лямбда зонд Bosh 078 906 265 A.

Для того чтобы было удобней проверять, необходимо сделать следующее:

1. снять верхнюю декоративную крышку двигателя,
2. отсоединить патрубки вентиляции картерных газов,
3. снять резонатор впуска (вход в корпус дроссельной заслонки от вентиляции картерных газов на холостом ходу необходимо заткнуть, иначе получим подсос воздуха)
4. снять резиновый воздуховод от фильтра к резонатору.

Далее видим следующую картину…

1. сигнальный провод правой лямбды
2. сигнальный провод левой лямбды
3. подогрев правой лямбды
4. подогрев левой лямбды
5. место де удобно взять контакт для массы
6. патрубок регулятора давления топлива
7. фишка питания инжектора.

Все это нам потребуется для проверки работоспособности лямбд.

Начинаем с проверки целостности подогрева лямбда зондов, на фото с нумерацией элементов №3 и №4, на холодную сопротивление между контактами – 4,5 — 5,5 Ом.

Далее снимаем защитную резину с фишки сигнального провода.

Прогреваем авто до рабочей температуры, лямбда зонды при тестах — не отключаем.

Часть 2 Проверка мультиметром.

Для проверки использовался мультиметр Uni-T UT50.

Начинаем проверку:

1. выставляем на мульиметре измерение постоянного напряжения, диапазон 2 вольта.

2. подключаем минус к массе (точка №5 на фото с нумерацией элементов) плюс к сигнальной фишке (№1 или №2 на фото с нумерацией элементов).

3. производим замер на холостых оборотах двигателя. На исправном лямбда зонде напряжение должно постоянно меняться от 0,1 вольта до 0,9 вольт.
Мои значения: правый – от 0,11 до 0,86 вольт, левый от 0,13 до 0,84 вольт.

4. производим замер в переходном режиме (периодически газ до 3500 и отпускаем), значения должны часто меняться.
Мои значения: правый – от 0,07 до 0,85 вольт, левый от 0,07 до 0,86 вольт.

5. производим замер при обедненной смеси (отключаем подачу топлива в один из цилиндров, вытащив фишку питания инжектора на той головке блока, с которой снимаем показания, после замера подключаем инжектор обратно), на тестере должно появиться значение в районе 0,1 вольт.
Мои значения: правый – 0,067 вольт, левый 0,067 вольт.

6. производим замер при обогащенной смеси (отсоединяем вакуумную трубочку от регулятора давления топлива, №6 на фото с нумерацией элементов, и затыкаем ее чтобы не образовался подсос). В идеале мы должны увидеть на тестере 0,9 вольт.
Мои значения: правый – 0,89 вольт, левый 0,89 вольт.

Произведя данную проверку мы можем сказать, исправен ли лямбда зонд по диапазону изменения напряжения или нет.

Мои замеры показали, что лямбда зонды живы и работают вполне правильно, единственный недостаток тестирования мультиметром – нет возможности оценить скорость переключения, она не должна быть более 0,2-0,3 с.


Часть 3 Проверка осциллографом.

Да, не у каждого в наличии есть осциллограф и умения с ним обращаться, но можно поспрашивать среди друзей может, у кого есть знакомые радиолюбители. Т.к. я сам радиолюбитель, простенький осциллограф у меня имеется и умения работы тоже (хотя и не очень большие).

Первым делом прогреваем советский осциллограф С1-93, выставляем нулевой уровень (я поставил на втрое деление)

ставим развертку на 0,5 секунд (одно деление по горизонтали 0,5с.), т.к. у нас диапазон изменения напряжения от 0 до 1 в., то разрешение по напряжению выбрал 0,2 вольта/деление (одно деление по вертикали 0,2 вольта).

Приступаем к измерениям (последовательность такая же как и с мультиметром)

1. Замер на холостых оборотах.

Левый лямбда зонд

Правый лямбда зонд

По осциллограммам видно диапазон изменения напряжения на обоих лямбдах от 0,17 в. до 0,83 в., лямбды работают исправно.

2. Замер на 2000 оборотах.

Левый лямбда зонд

Правый лямбда зонд

Именно в этом режиме производится оценка длительности фронта переключения лямбда зонда. Смотрим измерения — диапазон изменения напряжения на обоих лямбдах от 0,15 в. до 0,85 в., длительность фронта 200 – 250 мс. В принципе лямбды еще рабочие, но длительность фронта уже не идеальна, думаю — еще год проработают без проблем.

3. Замер реакции на обедненную смесь на холостых оборотах (отключаем один инжектор, количество кислорода в выхлопных газах растет т.к. один цилиндр качает воздух, лямбда видит обедненную смесь).

Левый лямбда зонд

Правый лямбда зонд

Момент отключения инжектора четко виден на осциллограммах – резкое падение до 0,1 – 0,12 вольт, длительность фронта – 170 мс. Работа лямбд – в пределах нормы.

4. Замер реакции на обогащенную смесь на холостых оборотах (отсоединяем вакуумную трубку регулятора давления топлива, давление в рампе повышается и впрыскивается больше топлива)

Левый лямбда зонд

Правый лямбда зонд

Момент отключения регулятора давления топлива четко виден на осциллограммах – резкий рост напряжения до 0,9 вольт, длительность фронта – 140 — 190 мс. Работа лямбд – в пределах нормы.

Диагностика осциллографом, по сравнению с мультиметром, более точная и полная.

Нужно отметить, что по осциллограммам можно судить и об исправности работы системы впрыска в целом, т.к. бывает, что лямбды исправны, а в других элементах проблемы (www.drive2.ru/l/1684503/ последний абзац)

Вывод: лямбды рабочие, но уже далеко не новые — думаю еще год будут исправно выполнять свои функции.

Спасибо за внимание!
Если материал оказался полезен или интересен, и нетрудно сделать клик – подписываемся, жмем «Нравится».

www.drive2.ru

Проверяем лямбда-зонд ⋆ CHIPTUNER.RU

Проверяем лямбда-зонд

©А. Пахомов 2007 (aka IS_18, Ижевск)

На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.

Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:
 
а) сканером
б) мотортестером, подключив щупы и запустив самописец.

Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8–0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна!

Как же нам выяснить, в чем кроется проблема – в датчике или в системе?  Очень просто. Смоделируем ту или иную ситуацию.
 
1. Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да – то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.

2. Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.

3. Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» – а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фро

chiptuner.ru

Как проверить лямбда-зонд — DRIVE2

Нашел кое-какую информацию (собираюсь комп бомбить — лопатил все подряд) по проверке лямбда-зонда, почти в домашних условиях. "Почти" — потому, что желателен осцилограф, а у многих нет даже китайского мультиметра! Тем не менее, будет полезно даже просто прочитать! Информация — не моя, подписана неким Cyril Pertsev, может псевдоним, не знаю, но инфа, на мой взгляд — полезная!

Методика следующая (универсальная для всех лямбда-зондов):
1. Найти датчик. Он располагается на выпускном коллекторе, напоминает просто болт вкрученный в коллектор и от него идут провода.
2. Решить как бум тестировать — со снятием или без снятия. В общем-то все равно, но если нет эстакады или подъемника, то лучше его выкрутить и помучить в домашних условиях.
3. Если датчик трехпроводный, то найти тот провод, который отвечает за нагрев, он нас не интересует. Найти просто — включить зажигание и определить на каком проводе постоянно присутствует 12 вольт.
4. Оставшиеся два провода сигнальные — земля и сигнал. Землю определить прозвонкой на массу. Нас интересует сигнальный провод. Пометить соответствующий контакт на зонде и снять зонд. Или не снимать зонд, но отключить его от проводов.
5. Прогреть машину (минуты 3-4 на >2000об.) если зонд не снимали или если снимали, то зажать зонд в тиски и прогреть его рабочую часть горелкой до 300-500 град.
6. Теперь берем высокоомный вольтметр или лучше осциллограф. Землю прибора присоединить к земляному контакту зонда, а не к его корпусу! Смотрим на сигнальный выход зонда. После прогрева на нем должно образоваться около вольта. Если не образовалось — зонд в помои, самому — в магазин.
7. Убираем горелку, зонд начинает остывать. Следим за сигналом, напряжение должно упасть до примерно полувольта. Можно поводить горелкой, чтобы зонд попадал в разные области пламени, там разная концентрация продуктов сгорания и будет видна реакция зонда на разный состав "выхлопной" смеси.
8. Если мерить осциллографом, то будут видны колебания сигнала вокруг уровня в 0.45V. Чем зонд свежее и лучше, тем колебания чаще. Если зонд переключается медленно и с задержкой, напряжение при разогреве заметно меньше 0.9 вольт, то значит он еще жив, но уже думает о том, как бы ему попасть в мусорное ведро.

9. NB: Зонд не выдает постоянного уровня напряжения, а все время колеблется с частотой несколько герц. Если зонд выдает постоянный уровень, то это тоже самое что 0, то есть зонд в помойку. Поэтому стрелочный вольтметр не очень пригоден, у него высока инерционность, нужен цифровой. Лучше всего осциллограф.
Ну, вот так …

www.drive2.ru

Как проверить лямбда зонд - 125 фото и способы проверки своими руками в гаражных условиях

Лямбда зонд представляет собой автомобильный датчик, который находится в выпускном коллекторе, и отвечает за распределение отработанных газов. Именно он измеряет количество не сгоревшего кислорода, и имеет огромное значение в полноценной работе ДВС (двигатель внутреннего сгорания) и расходе топлива.

Содержимое обзора:

От чего лямбда зонд приходит в негодность?

Проблемы с кислородным датчиком значительно ухудшают качество топлива в двигателе, оснований для его неправильной работы множество, но можно выделить основные причины:

  • Использование некачественного топлива, с низким октановым числом или с высоким содержанием вредных веществ, таких как железо и свинец.
  • В случае отказа или некорректной работы систем подогрева, так же возможны сбои в обработке данных.
  • Кратковременный, а так же частый пуск двигателя.
  • Загрязненные клапана ДВС (двигатель внутреннего сгорания).
  • Нарушена компрессия в цилиндрах двигателя.
  • Залегание маслосъемных колец

В случае обнаружения сбоев в работе кислородного датчика, необходима срочная диагностика и устранение неполадок, так как последствия его поломок довольно неприятные, запущенность неполадок может привести к полной блокировке автомобиля, так же может нарушиться система впрыска, ремонт которой обойдется недешево.

Диагностика

Проверку можно осуществить с помощью вольтметра, омметра, и мультиметра, (подробное видео по теме представлено ниже) последний из перечисленных может заменить оба тестера.

Так же осуществить диагностику можно четырьмя разными способами.

Нужно произвести поочередное замыкание контактов датчика с зажимами вольтметра, затем повернуть ключ зажигания что бы включить «массу», лампочки на табло приборов должны загореться, а вольтметр, при исправном датчике, должен выдать значение в диапазоне от 0,43 до 0,47 В.


Включите зажигание, щупы от вольтметра подсоедините к разъемам в проводах датчика кислорода, напряжение должно ровняться 12В.

Чтобы проверить лямбда зонд, нужно разъединить разъем датчика и при помощи омметра произвести измерение сопротивления проводов нагревателя. Нормальное значение сопротивления варьируется в пределах 3-11 Ом.

Чтобы проверить лямбда зонд тес

avtoadvice.ru


Смотрите также

КОНТАКТЫ

Екатеринбург

ул. Онуфриева 55

тел: +7 (912) 299 47 31

        +7 (912) 280 78 38

e-mail: [email protected]

 

Время работы:

12.00-20.00

Выходные:

понедельник

воскресенье

Рекомендуем позвонить

перед приездом!!!