Developed by JoomVision.com
 

Машины на водородном топливе


как работают водородные автомобили и когда они появятся на дорогах / Habr

В Испании, где я сейчас живу, довольно много электромобилей — встречаю их практически каждый день, как на дорогах, так и на станциях для зарядки. И каждый год электрокаров становится все больше (не только в Испании, конечно). Но есть и альтернатива — автомобили на водородном топливе, которые тоже не загрязняют природу, поскольку их выхлоп — вода. Тема сегодняшней справочной — водородные машины, принцип их работы и перспективы.

Когда появились первые автомобили на водороде?


Изобрел двигатель внутреннего сгорания, работающий на водороде, Франсуа Исаак де Ривас (François Isaac de Rivaz) в 1806 году. Водород он получал с помощью электролиза воды. Поршневой двигатель, который создал изобретатель, называют машиной де Риваса (De Rivaz engine).

Зажигание было искровым, двигатель имел шатунно-поршневую систему работы. Ну а цилиндр приводился в движение детонацией смеси водорода и кислорода электрической искрой — ее приходилось генерировать вручную в момент опускания поршня. Через два года этот же изобретатель построил уже самодвижущееся устройство с водородным двигателем.

Но более-менее широко применять водород для работы автомобильных двигателей стали много лет спустя. В 1941 году в блокадном Ленинграде автомобильные двигатели ГАЗ-АА были модифицированы инженер-лейтенантом Б. И. Шелищем. Движки управляли лебедками аэростатов заграждения (их заправляли водородом, и запасов газа в Ленинграде было много), но это были автомобильные двигатели. Кроме того, были модифицированы и несколько сотен движков в автомобилях.

Начиная с 1980-х сразу в нескольких странах, включая США, Японию, Германию, СССР и Канаду стартовало экспериментальное производство по созданию автомобилей, работающих на водороде, бензин-водородных смесях и смесях водорода с природным газом.

В 1982 году нефтеперерабатывающий завод «Квант» и завод РАФ разработали первый в мире экспериментальный водородный микроавтобус «Квант-РАФ» с комбинированной энергоустановкой на основе водородо-воздушного топливного элемента мощностью 2 кВт и никель-цинковой аккумуляторной батареи емкостью 5 кВт*ч.

На протяжении многих лет такие автомобили разрабатывали в разных странах по большей части в качестве эксперимента. После того, как концепция «зеленого» автомобиля стала популярной, автомобилями на водороде заинтересовались крупные корпорации вроде Toyota. Начиная с 2000-х, автомобильные компании стали разрабатывать концепты коммерческих авто.

А где брать водород?


Водород можно получать разными методами:
  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • биотехнологии.

Наиболее экономичным способом производства водорода сейчас считается паровая конверсия. Так называют получение водорода из легких углеводородов (метан, пропан-бутановая фракция) с использованием парового риформинга. Риформингом называют процесс каталитической конверсии углеводородов в присутствии водяного пара. Водяной пар смешивается с метаном при высокой температуре (700–1000 Сº) и большом давлении с использованием катализатора.

При паровой конверсии водород получать дешевле, чем используя любые другие методы, включая электролиз.

Наиболее безвредный способ производства водорода — электролиз — получение водорода из воды с использованием электрического тока. Чистота выхода водорода близка к 100%. Если не считать загрязнение для получения электричества, такие установки почти безвредны для окружающей среды, поскольку в процессе работы выделяются только водород и кислород.

Еще один безопасный для окружающей среды способ получения водорода — реактор с биомассой.


Источник

Производить водород можно и на крупной фабрике, и на относительно небольшом предприятии. Чем масштабнее производство — тем ниже себестоимость газа. Но зато в первом случае увеличиваются расходы на доставку водорода к местам заправки машин.

Как работает топливная система и какие есть варианты?


Лучше всего рассмотреть принцип работы такой системы на примере серийных водородных авто Toyota Mirai. Основа — топливный элемент, электрохимическая система, преобразующая частицы водорода и кислорода в воду. Внутри такого элемента — протонпроводящая полимерная мембрана, которая разделяет анод и катод. Обычно это угольные пластины с нанесенным катализатором.

На катализаторе анода молекулярный водород теряет электроны, катионы проводятся через мембрану к катоду, а электроны отдаются во внешнюю цепь. На катализаторе катода молекулы кислорода соединяются с электроном и протоном, образуя воду. Пар или жидкость — это единственный продукт реакции.


Преимущество топливных ячеек на основе протонообменных мембран — высокая удельная мощность и относительно низкая рабочая температура. Они быстро греются и почти сразу после старта начинают производить энергию.

В Mirai используются топливные элементы с высокой удельной мощностью на единицу объема (3,2 кВт/л), максимальная их мощность 124 кВт. Произведенный топливным элементом постоянный ток преобразуется в переменный с одновременным повышением напряжения до 650 В. Электричество поступает в литий-ионный аккумулятор. Для движения машина расходует запасенную в нем энергию.

Водород в топливный элемент Mirai поступает из баллонов высокого давления (около 700 атм). Блок управления в автомобиле контролирует режим работы топливного элемента и зарядку/разрядку аккумулятора.

По данным Toyota на 100 км пути Mirai требуется до 750 граммов водорода. Владельцы Mirai говорят о примерно килограмме водорода на 100 км пути.

Такие автомобили опасны? Почему?


Поскольку водород — горючий газ, то транспортировать и хранить его нужно осторожно. Нужны высокочувствительные газоанализаторы, которые смогут дать сигнал в случае утечки. Правда, водород очень летучий газ (ведь это самый легкий химический элемент) и при попадании в атмосферу водород быстро поднимается вверх.

Сгорает он очень быстро. Дирижабль «Гинденбург» горел всего 32 секунды. Благодаря скоротечности пожара погибли далеко не все пассажиры, выжили 62 человека из 97, находившихся в гондоле дирижабля.

Тем не менее, если автомобилей на водороде станет много, то потребуются новые меры безопасности движения на дорогах. Машины с ДВС тоже опасны — в случае аварии и пробоя бака бензин или дизельное топливо вытекают на дорогу и могут воспламениться. Если будет пробит бак с водородом, газ очень быстро улетучится. Но если близко будет источник открытого огня или искр, водород может загореться.

В Mirai и других моделях водородных авто используются очень прочные баки для водорода. Toyota сделала свои баки пуленепробиваемыми, их стенки из сверхпрочного волокна выдерживают выстрелы из крупнокалиберного оружия. Для тестов компания наняла снайперов и пробить бак смогла только пуля калибром .50 после двойного попадания в одно и тоже место.

Если соблюдать меры безопасности, водородные автомобили не опаснее машин с ДВС.

Какой срок службы у топливных ячеек?


Пока что такая информация есть лишь для Mirai. Toyota заявляет, что одна ячейка гарантированно будет работать на протяжении 250 000 км. Затем, если работа ячейки ухудшается, ее можно заменить в сервисном центре.

Какие компании уже выпускают или собираются выпускать автомобили на водороде?


Водородные машины разрабатывают Honda, Toyota, Mercedes-Benz и Hyundai — у этих компаний уже есть готовые транспортные средства. Другие показывают пока лишь концепты (впрочем, рабочие) или просто красиво отрендеренные картинки. К числу первых можно отнести Audi и Ford, к числу вторых — BMW (справедливости ради нужно сказать, что в 2007 году BMW выпустила партию из 100 экспериментальных «водородных» моделей, которые так и остались экспериментом) и Lexus.

В серию запущены пока лишь Toyota Mirai и Honda Clarity. Их можно приобрести в США и Европе.

Сколько это стоит?


В настоящий момент водородные автомобили немного дороже обычных в плане эксплуатации. Так, при поездке в Европе протяженностью 480 км затраты на горючее для владельца обычной машины составят примерно $45, а вот владелец Mirai заплатит около $57. И это при том, что правительство некоторых стран субсидирует производство водорода для машин. Стоимость 1 кг водорода составляет в среднем $11.45.

Чем водородные авто лучше электромобилей?


Собственно, вопрос не совсем корректный. Дело в том, что и автомобиль на водороде, с топливной ячейкой, и «чистый» электрокар — это электромобили. Просто в одном случае машину заправляют водородом, во втором — электричеством.

Если сравнивать стоимость большинства электромобилей и Toyota Mirai, то они сравнимы, это несколько десятков тысяч долларов США. Стоимость Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс. Стоимость электрокаров Tesla начинается с $45 тыс. (базовая комплектация с прайсом в $35 тыс. пока доступна лишь для предзаказа). Электромобили от BMW стоят около $50 тыс.

Водородные автомобили быстро заправляются — на это уходит всего 3–5 минут, в отличие от электромобилей, где нужно от получаса до нескольких часов для подзарядки.

Основное достоинство водородного транспорта в том, что топливные ячейки служат много лет и практически не нуждаются в обслуживании. Если взять «чистый» электромобиль с его огромной батареей, то ее срок службы всего 1–1,5 тыс. циклов, то есть 3-5 лет. Причем водородный автомобиль без проблем будет работать на морозе (заводиться в том числе), а вот аккумулятор электромобиля потеряет заряд.

Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?


Водородные автомобили уже колесят по дорогам Европы и США (возможно, единичные экземпляры есть и в других регионах). Но их немного — несколько тысяч, что нельзя назвать массовым внедрением.

Проблема, которая сейчас мешает распространению водородных транспортных средств — отсутствие инфраструктуры (всего несколько лет назад аналогичная проблема была актуальной и для электромобилей). Нужны специализированные фабрики по производству водорода, транспортные системы для водорода и заправки.


Водородные АЗС в 2019 году(источник)

Кроме того, водород получается довольно дорогим, так что если электромобили покупают, в частности, для экономии на топливе, то в случае водородной машины — это не вариант. При массовом появлении фабрик по производству водорода для машин, а также сервисной инфраструктуры можно ожидать выхода гораздо большего числа транспортных средств на водороде на дороги общего пользования.

Но нет гарантии, что это вообще случится ли это или нет — пока неясно. Автопроизводители вроде Toyota активно продвигают свои машины и преимущества водорода в транспортной сфере. Но конкуренция слишком велика, как среди обычных машин с ДВС, так и среди электромобилей.

habr.com

Автомобиль на водороде. Пора ли прощаться с бензином? / Toshiba corporate blog / Habr

Привет, Хабр! К нашей прошлой статье о водородной энергетике вы написали очень интересные и справедливые комментарии, ответы на которые вы сможете найти в этом материале, посвященном использованию водорода в автомобилях.

Действительно, в сравнении с бензином водород — одна сплошная проблема: его очень трудно хранить и непросто получать, он взрывоопасен, а водородные автомобили в разы дороже бензиновых. Но при этом водород считается наиболее перспективным видом альтернативного топлива для транспорта. К тому же, на производство водородных автомобилей инвесторы готовы тратить многомиллиардные инвестиции.

Приговор бензину уже подписан


Согласно последнему отчету BP Statistical Review of World Energy 2018, мировые разведанные запасы нефти составляют 1,696 млрд баррелей, чего при сохранении текущего уровня потребления хватит лет на пятьдесят. Неразведанные запасы нефти, предположительно, дадут нам еще полвека углеводородной энергетики, но и стоимость ее добычи может оказаться такой, что нефть попросту станет невыгодна в сравнении с другими источниками энергии. Когда месторождения с удобной добычей истощатся, цена на сырье автоматически пойдет вверх: если сейчас стоимость добычи барреля в России некоторыми оценивается в 2-3 доллара (по альтернативным оценкам, в 18 долларов), то для сланцевой нефти это уже 30-50 долларов. А впереди у человечества реальная перспектива перейти на добычу шельфовой и арктической нефти, цена которой будет еще выше.

Всплеск интереса к электротранспорту в 70-х годах XX века возник как раз на фоне скачкообразного роста цен на нефть из-за политического кризиса — недостатка в сырье не было, но четырехкратный рост цен мгновенно сделал бензиновые автомобили и нефтяную энергетику роскошью.

А еще на пути бензиновых авто встали более спорные препятствия — забота об экологии в городах и странах, где автомобильный выхлоп стал проблемой. Из-за этого, например, Германия приняла резолюцию о запрете производства автомобилей с ДВС с 2030 года. Франция и Великобритания обещают отказаться от углеводородного топлива до 2040 года. Нидерланды — до 2030 года. Норвегия — до 2025 года. Даже Индия и Китай рассчитывают запретить продажи дизельных и бензиновых авто с 2030 года. Париж, Мадрид, Афины и Мексика запретят к использованию дизельные машины с 2025 года.

Сжигание водорода в ДВС


Сжигание водорода в обычном двигателе внутреннего сгорания кажется самым простым и логичным способом применения газа, ведь водород легко воспламеняется и сгорает без остатка. Однако из-за разницы в свойствах бензина и водорода перевести ДВС на новый вид топлива оказалось не так-то просто. Сложности возникли с долгосрочной эксплуатацией движков: водород вызывал перегрев клапанов, поршневой группы и масла, из-за втрое большей, чем у бензина, теплоты сгорания (141 МДж/кг против 44 МДж/кг). Водород неплохо показывал себя на низких оборотах движка, но при росте нагрузки возникала детонация. Возможным решением проблемы была замена водорода на бензиново-водородную смесь, концентрация газа в которой динамически уменьшалась по мере роста оборотов двигателя.


Двухтопливная BMW Hydrogen 7 в кузове E65 сжигает водород в ДВС вместо бензина
Источник: Sachi Gahan / Flickr

Одним из немногих серийных автомобилей, где водород сжигался в ДВС подобно другому топливу, стал BMW Hydrogen 7, вышедший всего в 100 экземплярах в 2006–2008 годах. Модифицированный шестилитровый ДВС V12 работал на бензине или водороде, переключение между видами топлива происходило автоматически.

Несмотря на успешное решение проблемы перегрева клапанов, на этом проекте все равно поставили крест. Во-первых, при сжигании водорода мощность двигателя падала примерно на 20% — с 260 л. с. на бензине до 228 л. с. Во-вторых, 8 кг водорода хватало всего на 200 км пробега, что в разы меньше, чем в случае с дизельными элементами. В-третьих, Hydrogen 7 появился слишком рано — когда «зеленые» автомобили еще не были так актуальны. В-четвертых, ходили упорные слухи, что Агентство по охране окружающей среды США не разрешило называть Hydrogen 7 автомобилем без вредного выхлопа — из-за особенностей работы ДВС, частицы моторного масла попадали в камеру сгорания и там воспламенялись вместе с водородом.

Mazda RX-8 Hydrogen RE — тот случай, когда водород загубил всю динамику роторного двигателя. Источник: Mazda

Еще раньше, в 2003 году, была представлена двухтопливная Mazda RX-8 Hydrogen RE, добравшаяся до заказчиков только к 2007 году. При переходе на водород от мощности легендарного роторного RX-8 не оставалось и следа — мощность падала с 206 до 107 л. с., а максимальная скорость — до 170 км/ч.

BMW Hydrogen 7 и Mazda RX-8 Hydrogen RE были лебединой песней водородных ДВС: к моменту появления этих автомобилей стало окончательно ясно, что куда эффективней использовать водород в давно известных топливных элементах, чем просто жечь.

Топливные элементы в автомобилях


Первым успешным экспериментом по созданию транспортного средства на водородном топливном элементе можно считать трактор Гарри Карла, построенный в 1959 году. Правда, замена дизеля на топливный элемент снизила мощность трактора до 20 л. с.

В последние полвека водородный транспорт выпускался в штучных экземплярах. Например, в 2001 году в США появился автобус Generation II, водород для которого производился из метанола. Топливные элементы создавали мощность до 100 кВт, то есть около 136 л. с. В том же году российский ВАЗ представил «Ниву» на водородных элементах, известную под именем «Антэл-1». Электродвигатель выдавал мощность до 25 кВт (34 л. с.), разгонял авто максимум до 85 км/ч и на одной заправке работал 200 км. Единственный произведенный автомобиль остался «лабораторией на колесах».


Российский автомобиль на водородных топливных элементах — в то время технологии ушли дальше дизайна. Источник: «АвтоВАЗ»

В 2013 году Toyota встряхнула автомобильный мир, представив модель Mirai на водородных топливных элементах. Уникальность ситуации была в том, что Toyota Mirai был не концепт-каром, а готовым к серийному производству автомобилем, продажи которого начались уже год спустя. В отличие от электромобилей на аккумуляторах, Mirai сама вырабатывала электричество для себя.


Toyota Mirai. Источник: Toyota

Электродвигатель переднеприводной Mirai имеет максимальную мощность 154 л. с., что немного для современного электромобиля, но весьма неплохо в сравнении с водородными авто прошлого. Теоретический запас хода на 5 кг водорода составляет 500 км, фактический — около 350 км. Tesla Model S по паспорту может пройти 540 км. Вот только на заправку полного бака водорода уходит 3 минуты, а батарея Tesla заряжается до 100% за 75 минут на станциях Tesla Supercharger и до 30 часов от обычной розетки на 220 В.

Постоянный ток из 370 водородных топливных элементов Mirai преобразуется в переменный, а напряжение увеличивается до 650 В. Максимальная скорость машины достигает 175 км/ч — немного в сравнении с углеводородным топливом, но более чем достаточно для повседневной езды. Для запаса энергии используется никель-металл-гидридный аккумулятор на 21 кВт∙ч, в который передаётся избыток от топливных элементов и энергия рекуперативного торможения. Учитывая японские реалии, при которых населённые пункты могут в любой момент пострадать от землетрясения, в багажнике Mirai 2016-го модельного года установлен разъем CHAdeMO, через который можно организовать электроснабжение небольшого частного дома, что делает автомобиль генератором на колёсах с предельной ёмкостью 150 кВт∙ч.

Кстати, всего за несколько лет Toyota удалось значительно уменьшить массу генератора: если в начале века в прототипах он весил 108 кг и выдавал 122 л. с., то в Mirai топливный элемент вдвое компактней (объем 37 литров) и весит 56 кг. Справедливо будет прибавить к этому 87 кг топливных баков.

Для сравнения, популярный современный турбомотор Volkswagen 1.4 TSI схожей с Mirai мощностью 140–160 л.с. славится своей «лёгкостью» благодаря алюминиевой конструкции — он весит 106 кг плюс 38–45 кг бензина в баке. Кстати, батарея Tesla Model S весит 540 кг!

За 4 км пробега Mirai вырабатывает только 240 мл дистиллированной, относительно безопасной для питья воды — энтузиасты, пробовавшие «выхлоп» Mirai, сообщали только о лёгком привкусе пластика.

Пить воду, слитую из Mirai, безопасно, хотя сперва зрелище шокирует

В Toyota Mirai установлено сразу два бака для водорода на 60 и 62 литра, в сумме вмещающих 5 кг водорода под давлением 700 атмосфер. Toyota разрабатывает и производит водородные баки самостоятельно вот уже 18 лет. Бак Mirai сделан из нескольких слоёв пластика с углеволокном и стеклотканью. Использование таких материалов, во-первых, повысило стойкость хранилищ к деформации и пробитию, а, во-вторых, решило проблему наводораживания металла, из-за которого стальные баки теряли свои свойства, гибкость и покрывались микротрещинами.

Строение Toyota Mirai. Спереди расположен электродвигатель, топливный элемент спрятан под водительским сидением, а под задним рядом и в багажнике установлены баки и аккумулятор. Источник: Toyota

Каковы перспективы?


По оценкам Bloomberg, к 2040 году автомобили будут потреблять 1900 тераватт-час вместо 13 млн баррелей в сутки, то есть 8% от спроса на электричество по состоянию на 2015 год. 8% — пустяк, если учесть, что сейчас до 70% добываемой в мире нефти уходит на производство топлива для транспорта.

Перспективы рынка аккумуляторных электромобилей куда более явные и впечатляющие, чем в случае с водородными топливными ячейками. В 2017 году рынок электромобилей составлял 17,4 млрд долларов, в то время как водородный автомобильный рынок оценивался в 2 млрд долларов. Несмотря на такую разницу, инвесторы продолжают интересоваться водородной энергетикой и финансировать новые разработки.

Примером тому является созданный в 2017 году «Водородный совет» (Hydrogen Council), включающий 39 крупные компании, таких как Audi, BMW, Honda, Toyota, Daimler, GM, Hyundai. Его целью является исследование и разработка новых водородных технологий и их последующее внедрение в нашу жизнь.

habr.com

Новый автомобиль Toyota Mirai, работающий на водороде :: Инфониак

Технологии

Представьте, что вместо того, чтобы выбрасывать вредную смесь двуокиси углерода, окиси углерода, углеводородов, бензола и различных твердых частиц, выхлопная труба Вашего автомобиля испускает только воду.

Это может звучать как научно-фантастический рассказ, но на самом деле является реальным новым автомобилем под названием Toyota Mirai, который появится на улицах уже в этом году.


Авто на водороде

avto2.jpg

В то время, как мы привыкли заполнять бензином или дизельным топливом свой автомобиль, новое "японское чудо" – Мирай – работает на наиболее распространенном элементе во вселенной - водороде.

Газообразный водород заправляют в бак автомобиля так же, как и бензин, а затем особый топливный элемент, производящий химическую реакцию за счет водорода и кислорода, преобразует электроэнергию, которая и является движущей силой машины. Что удивительно: единственным побочным продуктом этого процесса является вода.

avto4.jpg

Несомненно, Вы уже слышали про электромобили, которые далеко не могут уехать без подзарядки, а их максимальная скорость варьируется в пределах 70 км/ч. Однако Мирай на альтернативном виде топлива вне конкуренции.

avto3.jpg

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9.6 секунд и, самое главное, она способна проехать без дополнительной дозаправки 482 км. Ультрасовременные баки из углеродного волокна заполняются примерно за десять минут.

Читайте также: Автомобиль с ядерным двигателем: 8 грамм тория на миллионы километров

avto5.jpg

При упоминании водорода в качестве топлива некоторые люди могут вспомнить о немецком дирижабле Гинденбурга, который сгорел над штатом Нью-Джерси, США в 1937 году.

Однако конструкторы Toyota Mirai заверяют, что на данном автомобиле такая ситуация сведена на "нет" благодаря пуленепробиваемым резервуарам, в которых размещены водородные топливные элементы. Поэтому у обычного бензинового бака гораздо больше шансов быть взорванным в результате ДТП.

avto7.jpg

В целом авто имеет амбиции покорить весь мир. Но компании Toyota нужно спешить, ибо в следующем году Honda, Ford и Nissan планируют выпустить на рынок автомобили с похожими технологиями.

avto6.jpg

Если бы все автомобили ездили на водороде, то воздух в наших городах был бы намного чище. К тому же всем известен факт, что нефть на планете заканчивается, а, следовательно, рано или поздно бензин будет стоить безумно дорого (хотя и сейчас это уже не дешевое удовольствие).

Получается, что если все люди пересядут на такие автомобили, то человечество может сделать шаг к избавлению от проблем, связанных с загрязнениями окружающей среды.

Недостатки автомобиля на водороде

avto8.jpg

Но, конечно же, не все так радужно, как хотелось бы. Существуют серьезные проблемы, которые могут стать камнем преткновения на пути к альтернативе бензиновых двигателей.

1. В настоящее время автомобили на водороде очень дорогие. Мирай, четырехдверный седан, должен поступить в продажу за 99 700 долларов. В то время как стоимость автомобиля с бензиновым двигателем такого же класса составляет приблизительно 30 000 долларов.

2. Следующая проблема - это заправка автомобиля будущего. Вам нужно будет найти ближайшую водородную заправочную станцию, чтобы ехать после того, как бак опустеет, а в настоящее время таких АЗС единицы в некоторых европейских странах и США, в то время как в большинстве стран водородных АЗС вообще нет. Предположительно к 2020 году количество водородных заправочных станций увеличат в разы, но и этого будет совершенно недостаточно.

3. Заправка полного бака Toyota Mirai будет стоить около 103 доллара, что примерно в два раза больше, чем заправить автомобиль на бензиновом двигателе того же класса, который проезжает те же 482 км.

Субсидии для авто на водороде

avto9.jpg

Конечно, вопросы стоимости инфраструктуры могут быть частично решены правительствами, которые в состоянии создать стимулы: предоставлять покупателям различные скидки или даже обеспечивать людей заправкой водородом бесплатно.

Это уже происходит в Японии – в стране, где беспокоятся о своей энергетической безопасности (особенно после ядерной катастрофы на Фукусиме).

Правительство Японии очень помогает населению субсидиями на покупку водородных автомобилей (сумма субсидии составляет почти 27 000 долларов) в рамках программы, для которой выделят 400 млн. долларов из государственного бюджета.

С помощью данной программы планируется помочь населению Японии закупить 6 000 частных транспортных средств, работающих на водороде.

Между тем в США комитет энергетики штата Калифорния пообещал 205 млн. долларов для обеспечения почти 70 АЗС водородным топливом к концу следующего года. В Калифорнии также выплачивают 12 000 долларов тем, кто покупает автомобили на водороде.

avto10.jpg
А вот в Великобритании такие автомобили будут стоить дороже, по той простой причине, что технологические компании, как правило, "раздувают" там цены. На туманном Альбионе люди готовы платить за такой товар традиционно больше, нежели жители других продвинутых стран.

Британское правительство, со своей стороны, пообещало 17 млн. долларов для постройки еще 15 водородных станций на Юго-Востоке страны.

Производство водорода

avto12.jpg

Еще одной проблемой таких машин является производство водорода, так как это довольно проблематичное мероприятие.

Наиболее распространенный метод называется паровой реформинг. Он заключается в том, что пар смешивается с природным газом, затем нагревается до определенной температуры с последующим добавлением катализатора, такого как никель, в результате чего получается водород и моноксид углерода (ядовитый газ). Около 95 % водорода в мире производится этим путем.

К сожалению, это не экологически чистый процесс, потому что результатом являются и побочные продукты. Таким образом, хотя сам по себе водород в автомобиле не загрязняет окружающую среду, производство данного топлива будет загрязнять наш с Вами воздух.

В результате даже защитники автомобилей на водородном топливе признаются, что производство водорода будет загрязнять окружающую среду в лучшем случае как автомобили на бензиновых двигателях, а в худшем – значительно больше.

avto13.jpg
Ученые сейчас разрабатывают "зеленые методы" производства водорода, такие как извлечение водорода из кукурузной шелухи или использование ветряных турбин для питания электролиза воды.

В настоящее время не было придумано экологически чистых и достаточно эффективных методов производства водородного топлива для каждодневной заправки миллионов автомобилей.

Конечно же, поклонники автомобилей, работающих на водородном топливе, непреклонны: они уверены, что мы должны продвигаться вперед, ибо наше будущее зависит от работы автотранспорта, который не будет причинять ущерб нашей планете.

Проблемы водородных автомобилей

avto14.jpg

Компания Toyota утверждает, что Mirai выделяет всего 100 мл воды на примерно 2 км пути. Подсчитано, что, например, в Великобритании все автомобили проезжают около 488 млрд. км в год. Это означает, что если бы каждый автомобиль был бы Toyota Mirai, то утечка от всех автомобилей составила бы 3 млрд. л воды и водяного пара каждый год.

Читайте также: Автомобили на водородном топливе – будущее становится ближе

Для сравнения: такого огромного количества воды хватило бы, чтобы заполнить около 12 000 плавательных бассейнов, предназначенных для проведения олимпийских игр.

Конечно, вода сама по себе является безобидной для нас всех субстанцией, но только не для наших дорог во время морозов. Представьте себе автомагистраль с интенсивным движением в середине зимы, и с каждого транспортного средства выливается 1 литр воды каждые 20 км. Ведь вся эта вода превратится в каток в считанные минуты. А если вода выбрасывается в виде пара, то предсказуемый результат - туман.

По сообщениям, в городе Рейкьявик, Исландия, пассажиры автобусов на водородном топливе тревожатся о количестве водяного пара, который выходит только из одного автобуса из множества.

avto15.jpg

Таким образом, хотя водородные автомобили имеют массу преимуществ (например, беззвучность и экологичность), существует много проблем с ними, которые требуют решения, иначе такие машины будут не востребованы.

Возможно, водородные топливные элементы станут успешно использоваться, например, вилочными погрузчиками, работающими в закрытых помещениях, где бензиновый или дизельный дым особенно нежелательны.

Так что еще предстоит выяснить, будем ли мы все наслаждаться водородными семейными автомобилями в следующем десятилетии или нет...

Автомобиль на воде (видео)

www.infoniac.ru

Водородные автомобили — DRIVE2

Полный размер

«Если мы используем “чистый” электромобиль, то и электроэнергия, которая приводит его в движение, должна вырабатываться с помощью “чистой” энергии: солнце, вода или ветер. Однако время и продолжительность, когда мы будем производить такую электроэнергию, не будет совпадать с тем временем, когда мы нуждаемся в ней. Это может быть суточная разница, погодная, сезонная и т.д. Значит, нам надо хранить электроэнергию в батареях долгое время — понадобятся гигантские хранилища. Это нереально, тем более, что нынешние батареи не могут долго хранить энергию. Именно поэтому мы не мыслим будущего без водорода и автомобилей на топливных элементах», — это слова Геральда Килманна, вице-президента по исследованиям и разработкам Toyota.
Японский автопроизводитель видит свое будущее в развитии технологий на топливных элементах, где основным топливом должен стать водород. Но где и как его добывают таким способом, чтобы весь процесс стал экологически чистым? Для ответа на этот вопрос мы отправились в Японию на небольшую опытно-экспериментальную фабрику Hama Wing в Иокогаме, что в 40 минутах езды от Токио. Ее начали строить в 2015 году, а уже в 2018 фабрика должна выйти на проектную мощность. Речь идет о ветряной электростанции, расположенной на самом берегу бухты Иокогама, которая совмещена с производством водорода путем электролиза воды и его хранилищем.
Электричество необходимо для электролизной установки, которая расщепляет воду на кислород и водород, а также компрессоров, которые сжимают водород для последующего стационарного хранения в резервуаре, расположенном на самой станции, либо для транспортировки в грузовиках-заправщиках до конечного потребителя. В данном случае потребителями являются местные предприятия, использующие 2,5-тонные вилочные погрузчики на топливных элементах. Излишки электричества, вырабатываемые ветрогенератором, либо запасаются в хранилище с аккумуляторами, либо отдаются в электросеть города посредством распределительной щитовой. Это если вкратце, но самое интересное кроется в деталях.
Сам процесс выработки водорода происходит в электролизной установке, изготовленной компанией Toshiba. Это небольшой контейнер (длина — 6,2 м, ширина — 2,4 м, высота — 2,9 м), в котором находятся воздушный компрессор, электролизер, охладитель и воздушный ресивер. Рядом с электролизной установкой расположен небольшой резервуар с азотом. Азот нужен для работы охладителя, так как в процессе электролиза выделяется тепло — водород находится в нагретом состоянии. Таким образом система охлаждает всю установку и полученный газ, чтобы исключить возможность его взрыва.
Для транспортировки водорода к конечному потребителю используются дизель-электрические гибридные грузовики Hino Dutro Hybrid последовательно-параллельной схемы, выполненной на манер Toyota Prius. Одного грузовика хватает, чтобы заправить 6 погрузчиков на топливных элементах. Грузовики по сути являются мобильными водородоснабжающими АЗС: они оснащены оборудованием, позволяющим осуществлять закачку водорода под давлением 35 МПа непосредственно в погрузчик на местах, где отсутствует необходимая заправочная инфраструктура.
На заправку «полного бака» одного погрузчика, который вмещает 1,2 кг водорода, уходит 3 минуты. Этого запаса хватает на 8 часов непрерывной работы при температуре окружающей среды 0-40°С. Также на борту стоит преобразователь и бытовая розетка с напряжением 100В — таким образом погрузчик в любой момент может стать на 15 часов источником бесперебойного питания, к которому можно подключать приборы и устройства мощностью до 1 кВт.
У проекта Hama Wing есть несколько важных целей: первая — продемонстрировать всю технологическую цепочку производства и реализации низкоуглеродистого водорода от его получения и хранения до снабжения конечного потребителя; вторая — создать простую и понятную интегрированную систему, которая даст возможность оценить как практическую доступность водорода в качестве вида топлива, так и потенциал дальнейшего коммерческого использования этой системы; третья — использовать производство водорода как эффективную меру для развития региона и борьбы с глобальным потеплением.
О «социальной» значимости данного проекта говорит тот факт, что в центре почти 4-миллионной Иокогамы в парке Ринко, где любят отдыхать местные жители, установлено электронное табло, которое круглосуточно показывает информацию о текущем состоянии ветряка и количестве выработанной электроэнергии. Более того, каждый год порядка 14000 человек посещает «водородную фабрику», чтобы воочию увидеть, как происходит выработка топлива будущего.

Как вы могли понять, фабрика Hama Wing, равно как и вышеупомянутый автомобиль Toyota Mirai, — это лишь начало, часть глобальной идеи японцев по переводу всего и вся на электричество и водород как энергоноситель, получаемые из возобновляемых источников энергии. Например, Toyota уже реализует программу строительства «зданий с нулевыми выбросами», использующих технологию на топливных элементах.
Единственный на данный момент серийный автомобиль с топливными элементами – Toyota Mirai. В конце прошлого года его начали продавать за солидные $57 400 в Японии, в ближайшее время Mirai выйдет на рынки США, Канады и Европы. Этот сопоставимый по размерам с Toyota Camry седан скомпонован так: электромотор и контроллер – на передней оси, за ним – блок топливных ячеек с конвертером, под пассажирским диваном и в багажнике – два бака с водородом и небольшая литий-ионная батарея, необходимая для рекуперативного торможения. Все эти элементы установлены максимально низко, что гарантирует достаточно много места в салоне.
Чтобы Mirai ездил, его нужно заправлять как и обычное авто. Только не бензином, а сжатым водородом. Процесс заправки занимает несколько минут, а не минимум полчаса-час, как у современных электрокаров. Запас хода водородного автомобиля – более 500 км на одном баке, что лучше, чем у самого навороченного электрокара современности Tesla Model S (около 430 км). Электромобили попроще проезжают на одной зарядке около 200 км.
На данный момент большой запас хода и быстрое время заправки – единственные преимущества водородных электромобилей перед традиционными электрокарами на литий-ионных аккумуляторах. Потери электроэнергии в связке «электросеть – зарядное устройство – литий-ионный аккумулятор – электромобиль» составляют не более 15%. В случае с водородным автомобилем потери энергии (электролиз воды, сжатие водорода, его транспортировка, производство электроэнергии в топливных ячейках) достигают немыслимых 60%.
Для производства 1 кг сжатого водорода (по объему он равнозначен 1 галлону, либо же 3,8 л) путем электролиза воды нужно потратить от 50 до 80 кВт*ч электроэнергии. КПД процесса на данный момент – не более 70%. Два бака Toyota Mirai рассчитаны на 5 галлонов водорода, соответственно, на преодоление каждых 100 км пути нужно «вложить» минимум 50 кВт*ч электроэнергии. Это значительно больше, чем средние 20 кВт*ч на «сотню» у Tesla Model S.
Хранение и транспортировка сжатого водорода – также непростая и затратная задача. Это топливо перевозят цистернами, выдерживающими давление до 690 атмосфер (для сравнения: популярный на наших АЗС пропан-бутан транспортируют под давлением 16 атмосфер). Водород – крайне взрывоопасное вещество, поэтому чтобы открыть водородную АЗС или выпустить на рынок автомобиль на топливных ячейках, нужно вложить намного больше средств, чем в случае с электрокаром на литий-ионных батареях.
Инвестиции Toyota, Nissan и Honda в инфраструктуру для водородных автомобилей говорят о том, что они все же видят в таких машинах будущее. Точнее – источник прибыли. Сейчас галлон водорода на американской АЗС стоит около $10. Средняя цена бензина по Штатам – $2,8 за галлон. В переводе на обычный 95-й Mirai потребляет примерно 13 л/100 км, что вполне адекватно как для массивного седана. Экологи спокойны, ведь Mirai не вредит окружающей среде. Японские автогиганты рады, ведь их автомобили все так же требуют регулярных финансовых вливаний в виде заправки. На контролируемых ими АЗС.
По данным ресурса h3Stations.org, в мире действуют или вот-вот должны быть запущены более 600 водородных заправочных станций. Они установлены в США, Западной Европе, Китае и Японии. Это пока чересчур много как для единственного серийного пассажирского автомобиля на топливных элементах Toyota Mirai. Но уже скоро у него могут появиться конкуренты: концепты подобных транспортных средств есть у Honda, Nissan, Volkswagen, Mercedes-Benz и других крупных производителей.

Kia решила показать на выставке CES прототип нового Niro EV, который не только имеет электрический мотор, но и обладает массой современных «штук». Например, он уже сейчас может работать с перспективными мобильными сетями 5G, которые в десятки (если не сотни) раз быстрее нынешних. Благодаря 5G автомобиль получит возможность «разговаривать» с другими машинами, с домом хозяина и так далее. А еще эта Киа сможет общаться с пешеходами — различные сообщения появляются на «решетке радиатора» (написано в кавычках, ибо никакой решетки тут нет).
презентация нового водородного кроссовера Hyundai прошла не на автосалоне в Детройте, который откроется уже скоро, а на выставке гаджетов. Итак, встречайте — Hyundai Nexo. Автомобиль, который подтверждает, что корейцы решили бороться с Toyota за перспективный рынок водородомобилей. Кстати о том, как делают водород и почему именно он (а вовсе не электричество) имеет все шансы заменить в будущем традиционный бензин Три баллона для водорода расположены тут под полом задней части кузова и вмещают 6,35 килограмма топлива, а запас хода на одной заправке доходит до 595 километров.
А еще именно Hyundai Nexo станет первой машиной, которая примет участие в испытаниях автопилота четвёртого уровня автономности (подразумевает фактически полный отказ от водителя, его премьера на серийных автомобилях намечена на 2021 год). «Мы понимаем, что будущее — за автономным транспортом, и соответствующие технологии нуждаются в проверке в реальных условиях, что обеспечит их быстрое, безопасное и масштабируемое развертывание», — отметил Янг У Чхоль, вице-президент Hyundai Motor.
Заявленный запас хода Niro EV — меньше 400 километров. По нынешним временам это мало, поэтому корейцы и не акцентируют внимание на этих цифрах. Зато в салон они рекомендуют всем заглянуть. Ведь там новый информаци

www.drive2.ru

Почему мы никогда не будем ездить на водородных автомобилях: engineering_ru — LiveJournal

Недавно Toyota объявила о том, что передаёт все свои патенты, связанные с автомобилями на топливных элементах в публичное пространство, и теперь они доступны для использования совершенно бесплатно. Новость умиляет тем, что патентов набралось аж 5 680 штук, задумайтесь только, как старались корпоративные юристы, патентуя всё вплоть до округлостей на кнопках. Но дело не только в этом, ведь в прошлом году именно Tesla стала первой, кто в мире патентных троллей и бесконечных судов открыл свои патенты. К слову, их у компании, выпускающей самый известный электромобиль, было меньше трёх сотен.


Toyota Mirai - первый в мире автомобиль на водородных топливных
элементах, который можно будет купить, а не взять в лизинг.

Но я хочу поговорить не столько об этом событии, сколько о том, почему даже появление первого автомобиля на топливных элементах, который можно купить, ничего не меняет для водородных автомобилей, и почему эта ветвь развития является абсолютно тупиковый. Илон Маск, CEO Tesla Motors, называет топливные элементы (fuel cells) "fool cells" (элементы одурачивания), аккумуляторные эксперты сходятся в том, что все в индустрии знают, что топливные элементы это ерунда, просто не все признают это, я же сосредоточусь на фактах.


Из-за падения цен на нефть стоимость галлона (3.76 литра) бензина в США упала
до $2, но даже во время дорогой нефти цена не поднималась выше $4.

1. Водород дорог.
Это просто факт. Сейчас рыночная цена на газ - $8.96 за эквивалент галлона бензина, 0.997 кг (данные за октябрь 2014 г.). Бак Toyota Mirai вмещает 5 кг водорода. Таким образом, одна заправка обошлась бы вам в $45 и её хватило на 480 км по методике тестирования EPA (данные ещё не проверены EPA, но вряд ли эта цифра окажется больше), что выливается в $9.38 за 100 км. Для сравнения, Toyota Prius проедет те же 100 км, потратив $2.76, а Tesla Model S - $2.99, если использовать ту же методику EPA и текущие средние американские цены.


К 2017 году Toyota планирует довести годовой выпуск Mirai до 2 100 штук.
Хотя существует множество оценок, предполагающих, что при больших объемах производства стоимость водорода снизится до $3 за кг (и приблизится к текущей цене на бензин), даже сама Toyota менее оптимистична в своих прогнозах: стоимость бака для Mirai снизится до $30 в будущем. Сейчас в США производится 7.31 миллионов кг ворода в день, в год около 2 600 миллионов килограмм. При среднегодовом пробеге около 21 500 км, его бы хватило для 12 миллионов автомобилей, то есть даже если бы водородных автомобилей в США продавали 10% от всех новых авто в течении 10 лет, производство лишь удвоилось, что не дало бы такого радикального снижения цены.


Предприятие по паровой конверсии природного газа в водород.
2. Производство водорода "грязнее" электрогенерации
Сейчас 95% водорода производится из углеводородов с помощью реакции паровой конверсии или частичного окисления. Остаётся от природного газа или углеводородов CO2, тот самый с которым все страны дружно борятся развитием альтернативной энергетики и альтернативных автомобилей. Если вспомнить, что в Европе и Азии, в отличие от США, нет своего природного газа, для того чтобы из него делать водород, то всё становится ещё печальней. Сейчас использование водорода ставит в прямую зависимость от цены на газ, что не сильно отличается от нефтяной зависимости, электричество же генерируется из десятка различных источников. Теоретически, водород можно получать электролизом, но сейчас такой газ для США будет в 3 раза дороже получаемого из метана. Более того, так как получение электричества не экологически чистый процесс, а конверсия электричества в водород, затем обратно из водорода в электричество в топливных элементах имеет низкий суммарный КПД, выбросы будут значительно выше, чем для электромобилей.


Реакция паровой конверсии метана: в качестве
побочного продукта выделяется пресловутый CO2

Для получения одного килограмма водорода требует 52.5 кВтч на электролизере с 75% эффективностью. Таким образом, Toyota Mirai, используя водород, полученный с помощью электролиза будет тратить 54,69 кВтч на 100 км. Даже огромная, более чем 2-х тонная Model S потребляет 23.75 кВтч на 100 км, а Mirai заметно меньше и не может похвастаться разгоном до сотни за 4 секунды. Добавьте к этому транспортировку водорода, компрессию, строительство электролизеров, строительство водородных заправок и станет понятно, что даже теоретически это не путь по уменьшению вредных выбросов в атмосферу.


Водородная заправочная станция стоит $2 млн. и
способна заправить лишь 30 автомобилей за сутки.

3. Водородная инфраструктура очень дорога и не развита.
Одна водородная заправочная станция обходится в $2 миллиона. Калифорния уже потратила $100 миллионов на водородные заправочные станции. Высокую цену станции подтверждают и европейские источники, например только господдержка на одну станцию в Великобритании составляет £1 млн. Вы думаете, зато такая станция может обслужить сотни машин? Нет, станции рассчитаны на заправку максимум 30 автомобилей в день. С одной стороны больше и не надо, откуда там взяться хотя бы двум, но с другой стороны суперзарядка Tesla Motors на 6-12 стоек обходится компании в $100k - $150k, а более продвинутая версия с солнечными батареями на крыше и аккумуляторами на 500кВтч для сохранения солнечной энергии в "целых" $300k. Надо ли добавлять, что такая станция в действительности может обслужить больше сотни машин в день.


Всего за год без какой-то государственной помощи Tesla Motors сделала
возможными дальние поездки на Model S по Западной Европе.

Сейчас в США 13 водородных заправочных станций. В 2015 году планируют открыть ещё пару десятков. Я думаю, не ошибусь, если скажу, что эти планы следуют за водородными автомобилями на протяжении последних 10 лет. Правда, одна лишь компания Tesla Motors, используя часть прибыли от продажи своих электромобилей без государственных грантов, за один месяц, декабрь 2014 года открыла 54 своих суперзарядки, 12 из них в США, каждая на 6-8 зарядочных стоек. За год в Европе открыто более 120 суперзарядок, такое же количество водородных станций обошлось бы в четверть миллиарда долларов.


Водородный Hyundai Tucson стоит $144 400, и даже такая высокая
цена не означает, что он не субсидируется производителем.

4. Водородные автомобили дороги.
Хотя Toyota Mirai будет продаваться на американском рынке за $62 000, большинство экспертов сходится во мнении, что эта цена субсидирована производителем (1, 2) Точных цифр от самой Тойоты нет, косвенно же это подтверждается высказыванием главы R&D компании о том, что автомобили на топливных элементах смогуть быть конкурентными по цене с электромобилями к 2030 году и стоимостью топливных элементов. Субсидирование производителем подтверждает и цена в $144 400 Hyundai Tucson на топливных элементах, продающийся в Южной Коррее. Но даже после такой большой субсидии со стороны производителя, покупатели не торопятся покупать автомобили на топливных ячейках.


Баки из углепластика со сжатым под давлением 680 атмосфер
водородом располагаются под днищем Toyota Mirai.

5. Нет ни одного преимущества водородных автомобилей перед электромобилями.
Большую часть недостатков я уже перечислил. Оставлю за бортом безопасность: хотя я бы побоялся ездить на двух баллонах с водородом под днищем, производитель утверждает, что это безопасно, так давайте поверим ему. Попробуем найти хоть какие-то преимущества автомобилей на водороде перед электромобилями. Запас хода? У Toyota Mirai - 480 км, у Tesla Model S - 424 км, Tesla Roadster после обновления в следующем году сможет проехать почти 640 км, все цифры по одной и той же методике тестирования EPA, "яблоки с яблоками", что называется. А есть же ещё и плагин-гибриды, которые дают симбиоз экономичности электромобилей с возможностью движения на обычном топливе на дальние расстояния. В общем, запас хода после появление Tesla уже не аргумент.


Tesla Model S P85D разгоняется от 0 до 100 км/ч за 3.3 секунды, в то время как
водородные автомобили довольствуются лишь динамикой самых слабых "дизелей".

Динамика? Разгон Toyota Mirai (от $62 000 в США) около 10 секунд до сотни, электромобиль BMW i3 (от $42 000 в США) набирает ту же скорость за шесть с половиной секунд, a Model S P85D разгоняется до сотни как McLaren F1. Остаётся единственное преимущество - скорость заправки за 3 минуты. Это могло бы быть козырем, если когда-нибудь водородных заправок стало как бензиновых. До этого момента преимущество у электромобилей - постоянная зарядка дома или на работе обеспечивает полностью заряженный автомобиль без необходимости куда-то специально заезжать. А быстрая зарядка даёт возможность полностью зарядиться за время обеда с семьёй при поездках на дальние расстояни. Если же спор идёт за абсолютные цифры, быстрая замена батареи позволяет через 1,5 минуты продолжить движение с "полным баком".


Honda тоже планирует выпустить автомобиль на топливных элементах
в конце 2015 года, правда пока он больше похож на концепт.

Резонно возникает вопрос: а зачем тогда это всё Toyota и другим компаниям. Тут надо уточнить, что кроме японского гиганта интерес к автомобилям на топливных элементах в разное время возникал лишь у Honda, Hyundai и немцев (Audi, VW, Mercedes, BMW). Остальные автомобильные производители были к ним равнодушны. В то же время и от этих компаний всё чаще слышится снижение интереса (VW, BMW, Hyundai) к автомобилям на топливных ячейках. Итак,


Сомневаюсь, что недавно представленный
водородный концепт Mercedes F 015 вообще ездит.

Зачем автомобильные компании продолжают делать водородные автомобили?
а) Диверсификация
Разработка и создание рабочего прототипа может стоить всего $1 млн. Создание концепта для автосалона ещё проще - он не обязан ездить. Для компаний с десятками миллиардов долларов оборота - это просто капля в море. А вдруг стрельнет, а вдруг именно эта технология окажется перспективной через 5 лет.

б) Сотрудничество между компаниями
Honda и BMW активно сотрудничают с Toyota и было бы в каких-то случаях не этично и не дальновидно не поддерживать её.


Электрический Fiat 500e продаётся лишь в Калифорнии, США для соответствия
экологическому законодательству. В Европе об этой машине никто не слышал.

в) Соответствие экологическим требованиям
Экологические требования в развитых странах ужесточаются каждый год. Например, для Калифорнии несколько производителей выпускает электромобили только для того, чтобы соответствовать CARB-законодательству. Сейчас законодательство изменилось так, что выпустить один автомобиль на водородных топливных элементах стало выгоднее в 5 раз, чем электромобиль. Добавьте сюда поддержку установки заправочной инфраструктуры постоянными грантами и вы получите готовый рецепт существования автомобилей не нужных самим производителям.


За 15 лет все автомобили Toyota получили гибридные версии.
г) Маркетинг
15 лет назад Toyota создала уникальный для того времени автомобиль, гибрид Toyota Prius. Вначале его производство было даже убыточным для компании, но позже продажи увеличились, себестоимость снижалась, и сейчас слово гибрид и экономичность для всех ассоциируется, главным образом, с Toyota. Продажи гибридных автомобилей составляют приличную долю доходов компании и спустя 15 лет стали высокомаржинальными. И тут появляются электромобили и плагин-гибриды. В этом сегменте конкуренция быстро нарастает, хотя доля продаж ещё заметно меньше, чем у обычных гибридов. В то же время доля обычных гибридов начинает падать, а электромобили и плагин-гибриды растут каждый год. При этом у Toyota нет никаких серьёзных наработок в этом сегменте.

Что надо сделать? Правильно, нужно сделать "poker face", говорить, что всё это ерунда, и дальше продавать Prius-ы миллионами.

engineering-ru.livejournal.com

что это, как работает, схема, фото, безопасность,

Водородный автомобиль считается самым экологичным транспортом наряду с электрокарами. Заправка авто на водородном топливе занимает считанные минуты, а «горючего» хватит на 400 км и более. А баллон водорода после использования оставляет после себя полведра чистой воды.

Почему же автомобильные концерны неохотно переходят на этот альтернативный источник энергии? Вопрос в стоимости и производстве этого газа.

В автомобилях с водородным двигателем применяются специальные топливные ячейки. Называются такие авто FCEV, что расшифровывается как Fuel Cell Electric Vehicles - электрокары с топливным элементом вместе батареи. Самая известная модель – это Toyota Mirai. А вообще многие модели есть только в виде концепта, серийно пока выпускается немного экземпляров.

В статье расскажу что это такое — водородный автомобиль, принцип работы и устройство, что такое водородный двигатель, плюсы и минусы авто на водороде, список моделей, ждёт ли будущее эта технология. Обещаю, будет интересно!

Немного истории

Впервые двигатель внутреннего сгорания придумал Франсуа Исаак де Риваз в 1806 г. Этот изобретатель извлёк чистый водород при помощи такой технологии, как электролиз воды. Он изобрёл поршневой двигатель, который назвали в его честь — машина де Риваза. Через пару лет изобретатель сконструировал передвижное устройство с настоящим водородным двигателем. Таким образом, первый водородный автомобиль появился гораздо раньше, чем думают многие.

Риваз и его машина

А самые первые водородные топливные элементы создал в 1863 году английский учёный Вильям Гроув. При помощи опыта он выявил, что при разложении воды на кислород и водород высвобождается энергия. В дальнейшем он создал водородные ячейки, которые стали называть Fuel Cell. Их можно было объединить для получения необходимого количества энергии для автомобиля.

Во время блокады Ленинграда был высокий дефицит бензина, а вот водорода было немало. Техник Б. Шелищ предложил вместо стандартного топлива применять смесь воздуха и водорода для двигателей. Таким образом, в городе работало на водороде более 500 автомобилей ГАЗ-АА.

Первый водородный автомобиль на топливных ячейках создала компания General Motors в 1966, и назывался он GM Electrovan. Гораздо позже, в 1980-х годах, одновременно во многих развитых странах (Япония, США, Канада, Германия и СССР) запустили эксперимент по созданию автомобилей, которые использовали в качестве топлива водород, а также его смеси с бензином и природным газом.

Фото GM Electrovan

После этих экспериментов в 2000-х годах крупные автоконцерны стали разрабатывать коммерческие автомобили на водородном двигателе. Самым продвинутым и популярным автомобилем стал Toyota Mirai, в котором находится многоячеистый топливный генератор.

На данный момент создание автомобиля на водородном топливе – это дорогое удовольствие, поэтому многие производители ищут способы для снижения этих расходов.

А что значит водородное топливо на самом деле?

Что такое водородное топливо?

Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.

На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.

Водород для топлива добывают следующими способами:

  1. Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.
  2. Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.
  3. Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.

В чём преимущество этого альтернативного источника энергии?

  • Топливные элементы не выделяют вредных выбросов.
  • Огромный потенциал и возможные прибыли.
  • Моментальная заправка автомобилей (3 минуты).
  • Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.

Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Toyota Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.

Плюсы и минусы водородной установки для автомобиля

Расскажу про плюсы и минусы топлива, которым заправляют водородный автомобиль.

Недостатки водородного топлива:

  • Нет эффективного способа добычи газа, к тому же производство загрязняет окружающую среду.
  • Для создания сети водородных заправок требуются внушительные средства (около 2 млн. долл. на одну среднюю заправку). Поэтому очень сложно найти заправки, их практически нет.
  • Высокая стоимость автомобиля.
  • Передвигаться можно лишь в тех местах, где имеются заправки.
  • Стоимость заправки будет стоить столько же, как и бензин. В этом смысле электрокар гораздо выгоднее.
  • Водородный автомобиль тяжёлый из-за сложной конструкции: много топливных ячеек, аккумулятор, электропреобразователь, большие баллоны для водорода, где давление целых 700 атм. В электромобиле всё проще – требуется только место под большой АКБ.

Плюсы водородного топлива:

  • Нет вредных выбросов в атмосферу.
  • Водородные двигатели практически не шумят.
  • Быстрая заправка – менее 5 минут.
  • Есть большой потенциал для развития.
  • Водород даёт в 3 раза больше энергии, чем бензин.
  • Высокий крутящий момент при начале движения.
  • Водорода очень много на планете – 1% от массы Земли. При сгорании он просто превращается в воду, поэтому – это неиссякаемый источник энергии по сравнению с другим ископаемым топливом.
  • Водород безопаснее бензина, он воспламеняется в 15 раз меньше. Но если на водород попадёт искра, то он моментально воспламенится.
  • Хороший запас хода водородного авто – 400-1000 км.

Опасен ли водород для человека?

Водород очень летуч, а также это легковоспламеняющийся газ, который хранить и перевозить следует предельно аккуратно. Сгорает он тоже довольно быстро. Например, газ в дирижабле «Гинденбург» полностью сгорел за полминуты, поэтому погибло только треть пассажиров.

Когда на дорогах появится большое количество водородных автомобилей, то надо будет ввести новые меры безопасности. Ведь при пробитии бака с водородом и наличием искр рядом газ может загореться. Поэтому в водородных автомобилях баки делают очень прочные, которые даже могут выдержать выстрел из крупнокалиберного пистолета. Поэтому при соблюдении правил безопасности, авто на водороде не опаснее бензиновых и дизельных моделей.

Чем водородные авто лучше электромобилей?

Этот вопрос не совсем правильный, поскольку автомобили на водородных ячейках и электробатарее считаются электромобилями. Всё зависит от того, чем заправляют машину – водородом или электричеством.

Водород в автомобиле применяют в двух вариантах: сжигание топлива в цилиндрах или подзарядка топливных элементов.

Главное отличие водородных топливных ячеек от батарей в том, что они служат очень много лет и не нуждаются в обслуживании. А батарея в электромобиле выходит из строя уже через 5 лет.

Как выглядит батарея в электрокаре

На холоде водородное транспортное средство включится без проблем, а аккумулятор электрического авто может полностью потерять заряд. Стоимость электрокаров дешевле, чем водородного: Toyota Mirai стоит 57 тыс. долл., а Tesla – от 45 тыс. долл. Водородные машины заправляются за считанные минуты, а электрокары – пару часов.

Теперь перейдём к устройству и принципу работы водородного авто, как он обеспечивает работу двигателя?

Как работает водородный автомобиль

Расскажу про то, как устроен автомобиль на примере популярной модели Toyota Mirai.

Не так давно, в 2013 году Тойота представила миру первый в мире серийный водородный автомобиль Mirai, который сам вырабатывает для себя электричество. В нём находится электрический двигатель, который имеет мощность 154 л. с. В Mirai находятся 370 топливных элементов, постоянный ток которых преобразуется в переменный, а напряжение при этом повышается до 650 В. Максимальная скорость Toyota Mirai 175 км/ч. Дополнительный аккумулятор собирает лишнюю энергию, который может при необходимости обеспечить питание небольшого дома. Запас хода этого автомобиля 500 км, а по факту – примерно 350 км. Для сравнения — электрокар Tesla Model S может пройти на одном заряде целых 540 км, но, к сожалению, зарядка занимает целых 1,5 часа.

За несколько км пробега автомобиль Mirai вырабатывает стакан дистиллированной воды, которая вполне пригодна к употреблению (она с лёгким привкусом пластика).

А как работает топливный элемент, простыми словами? Автомобиль заправляется водородом. Он смешивается с платиновым катализатором и кислородом в электрохимической системе. В результате этой реакции вырабатывается электрический ток, который питает двигатель и аккумуляторную батарею. В результате реакции образуется вода или пар.

Топливные ячейки с протонообменными мембранами сразу же производят энергию, обеспечивают очень высокую мощность и мало нагреваются. Максимальный срок службы водородных ячеек 250 тыс. км пробега, которые при необходимости можно заменить.

А какое устройство и принцип работы водородного двигателя? Для работы применяют роторные ДВС, потому что стандартные поршневые двигатели быстро выходят из строя из-за влияния водорода на смазку и детали ДВС. Из-за высокой разницы между бензином и водородом перевести обычный двигатель непросто, особенно если это делать своими руками. Водород при горении вызывает перегрев клапанов, масла, поршней. Если нагрузку сделать очень высокую, то возникает детонация.

Решили эту задачу заменой чистого водорода на его смесь с бензином. Подача газа уменьшается при повышении крутящего момента, чтобы предотвратить перегрев деталей силового агрегата. Это применяется в таких моделях, как Mazda RX-8 Hydrogen RE и BMW Hydrogen 7, который был выпущен всего в 100 экземплярах. Здесь переключение между 2 типами топлива происходит автоматически. Но, несмотря на успешность эксперимента, всё равно имелись проблемы: сильно падала мощность авто, запаса водорода хватало всего на 200 км, а также из-за наличия бензина автомобиль не был признан экологически чистым.

Mazda RX-8 Hydrogen RE

Зачем в водородных автомобилях платина? Этот дорогой металл использовался в качестве катализатора, цена которого очень высока, что не может не отражаться на стоимости автомобиля. Хотя американские учёные уже создали катализатор на основе углеродных трубок, который стоит в 650 дешевле платины.

Таким образом, механизм работы водородного автомобиля похож на работу электромобилей. Всё дело только в источнике энергии.

Где заправляют водородные автомобили?

К сожалению, заправочных водородных станций в мире совсем мало. В 2018 г. их около 300, половина которых находится в Северной Америке, а другие – в Японии, Германии и Китае.

Кроме этого, существуют домашние и мобильные заправки. Они могут производить около тонны чистого водорода в год. Этого вполне хватит для заправки нескольких автомобилей в день. Топливо производится при помощи гидролиза воды, установку запускают только ночью, чтобы не нагружать электрическую сеть.

Автозаправки бывают 3 типов:

  1. Малые. Они производят около 20 кг водорода в 24 часа. Хватит для полной заправки 5 легковых автомобилей.
  2. Средние. Вырабатывают от 50 до 1250 кг топлива в сутки. Могут в день заправлять 250 стандартных машин или 25 грузовиков.
  3. Промышленные. Производят более 2500 кг чистого водорода. Могут заправлять больше 500 легковушек в сутки.

Заправка состоит из компрессора, диспенсера, системы очистки, электрического лизёра, система хранения водорода. Топливо может производиться как при помощи электролиза воды, так и с помощью паровой конверсии метана.

Для того, чтобы заменить большую сеть бензиновых заправок на водородные, понадобится примерно 1,5 трлн. долларов. А стоимость одной водородной станции обойдётся в 2-3 млн. долл., но окупаемость её быстрее, чем для электрической станции из-за быстрой зарядки.

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina h3 Speed

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

Ограниченно выпускают:

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.

Испытывают:

  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.

motorist.guru

Водородные Автомобили в России. ᐈ Каталог авто на водородном топливе| Электромобили.Ру

Эффективное, но дорогое топливо

Публика уже привыкла к борьбе за популярность гибридов, машин с ДВС или электрокаров. Последние пока что занимают самую выгодную позицию, а может ли появиться еще кто-то эффективнее и экологичнее? Тогда стоит вспомнить о транспорте на водородном топливе. Такие машины очень похожи на электрические авто отсутствием вредных выхлопов, однако главное достоинство в заправке — для наполнения баллона водородом до отказа нужно около 10 минут, а хватит горючего на дистанцию в 500 км. Кажется, намного выгоднее, чем электромобиль, однако так ли это на самом деле?

История водородных автомобилей

Еще в 1990-х годах производители углубились в разработку транспортных средств, которые передвигаются на топливных элементах. Основная причина поиска альтернативного горючего — введение новых стандартов выбросов CO2 и энергетический кризис. Единственные экологически чистые автомобили того времени — электрокары, имели несколько ограничений: длительная зарядка аккумулятора, небольшой запас хода, дорогостоящие комплектующие. В итоге компании начали искать другой способ привести машину в действие.

В качестве основного топливного элемента выбрали водород. Химические свойства, экологичность и распространенность в окружающей среде подтолкнули инженеров к мысли, что работа с этим веществом может принести доход и внушительные перспективы. Водородные машины должны были проезжать такие же дистанции, как и бензиновые аналоги, с той же мощностью и скоростью. Однако основная сложность была в другом — как изготовить необходимый двигатель и направить энергию топливного элемента в правильное русло?

Оказывается, первый ДВС на водороде был придуман еще в позапрошлом веке. Большинство экспертов склоняются к исследованиям французского естествоиспытателя Франсуа де Риваз, который в начале XIX века получал водород электролизом воды. В современном мире крупные производители почти одновременно выпустили водородные автомобили с похожей базовой технической “начинкой”.

Принцип работы автомобилей на водородных элементах

Механизм работы и типы моторов очень похожи на деятельность электромобилей, но главное отличие в способе создания энергии. Машины на топливных элементах тоже используют электричество для движения, но получают его не от заряда розеткой. Энергия вырабатывается в процессе физико-химических реакций, которые происходят в самом агрегате. Принцип работы состоит в следующем:

  • автомобиль заправляется водородом, который контактирует с кислородом и катализатором. В результате вырабатывается электрический ток, который насыщает энергией двигатель и батарею.

Подобный транспорт заправляют на специальных станциях, которые самостоятельно вырабатывают водород с помощью электролиза воды. Обслуживание автомобиля означает замену водородных элементов, которые исчерпали свой ресурс. Обычно заменяют катализаторную мембрану, которая помогает вырабатывать электричество.

Преимущества использования автомобилей на водородном двигателе

  • Расширение продукции. Разработка и производство прототипа может обойтись в 1 млн долларов. Если создавать концепт для автовыставки, то такое транспортное средство не обязательно должно ездить. Для крупных автомобильных концернов эта сумма небольшая, но какой может быть результат. Вполне возможно, что через пару лет водородные технологии будут на высоте.
  • Неисчерпаемость. Мировой океан содержит 1,2×1013 тонн водорода, при этом суммарная масса элемента — 1% от общей массы планеты. Однако самое главное достоинство водорода в том, что при сгорании он превращается в воду. Происходит круговорот веществ в природе.
  • Экологичность. Когда водород используется в качестве топлива, то не происходит парниковый эффект (в результате выделяется вода). Водород быстро улетучивается и не создает никаких застойных зон.
  • Безопасность. Весовая теплотворная способность элемента в 2,8 раза выше, чем у бензина. А это значит, что водород воспламеняется в 15 раз меньше, чем углеводородное горючее.

Недостатки владения водородными автомобилями

Рассмотреть минусы транспорта на топливных элементах можно на примере первого массового водородного авто Toyota Mirai. Как оказалось, у машин подобной модификации, есть и темная сторона.

  • Стоимость. Сегодня японский автомобиль на водороде продается почти за 70 000$ в среднем, а это цена базовой версии Tesla Model S в США. Toyota Mirai дороже Chevrolet Volt или Toyota Prius в 2-3 раза. При этом компания еще и теряет доход, поскольку инсайд-информация указывает на реальную стоимость автомобиля в 100 000$. Еще один водородный автомобиль Hyundai Tucson (iX35) Fuel Cell вышел совсем недавно лимитированной серией. Модель оценили в 144 000$.
  • Заправка. Сегодня 1 кг водорода стоит почти 8$, а если брать расход 1-1,3 кг на дистанцию в 100 км, то стоимость поездки можно сравнить с движением на бензиновом автомобиле. Гибридный или дизельный агрегат будет даже выгоднее. В это время на 100 км на электромобиле можно потратить меньше 2$. При этом водород труднодоступен. Даже в мегаполисах не так легко найти подходящую заправочную станцию. Все потому, что этот бизнес и не очень выгодный. Для строительства небольшой водородной АЗС необходимо почти 300 000$, а для станции среднего размера — 2 000 000$. Небольшая заправка может заправить за сутки около 30 машин, а на большая почти 250 агрегатов. Это небольшие цифры при затратах на содержание подобных станций. Еще существуют и крупные АЗС, но они могут обойтись в 10 000 000$. Такие предприятия строятся рядом с заводами по выработке водорода, или же на станции должно быть большое хранилище. Все это сложное и дорогое строительство.
  • Габариты и вес. Модель на топливных элементах Toyota Mirai имеют длину 4900 мм и вес в 1850 кг, вместимость до 4 пассажиров и багажное отделение в 361 л. Параметры указывают на то, что водородное авто тяжелое и не особо просторное. Лишний вес образуется из-за сложной конструкции: топливные ячейки, электрический преобразователь и дополнительный аккумулятор. Небольшой салон получается из-за массивных баллонов для водорода. Ситуация с электромобилем немного легче — хотя и присутствует крупная АКБ, зато конструкция проще.

Каковы будущие перспективы FCEV?

Идея использовать двигатели на топливных элементах потихоньку развивается не только в умах производителей, но и на деле. Особенно радужные перспективы применения водородных моторов для общественного транспорта. В Германии ездят сотни городских и туристических автобусов на водороде. В 2017 году был анонсирован выпуск первого поезда на водородном топливе, который сможет заменить дизельные составы.

Однако многие эксперты считают, что когда будет придуман способ быстрой зарядки электромобиля, то водородные машины могут отойти на второй, или даже третий план. Все дело в том, что решение всех проблем, связанных с транспортом на водороде займет намного больше времени, чем строительство сверхбыстрых станций. Первая такая “заправочная” станция появилась в США в 2017 году, а в 2018 году несколько предприятий должны открыться в Европе. Но пока станции для электрокаров не так быстро распространяются, водородные автомобили набирают популярность.

elektro-mobili.ru

«Есть ли будущее у автомобилей, работающих на водороде?» – Яндекс.Кью

Машины, работающие на водороде, называют Fuel Cell Electric Vehicles или FCEV, на автомобильном рынке уже представлено несколько подобных решений. Конкретные коммерческие модели: Toyota Mirai и Honda FCX Clarity. Такая машина имеет так называемый топливный элемент (электрохимический генератор), являющийся своеобразной “батарейкой”, в которую поступает водород, после чего он окисляется и в результате на выходе мы имеем чистый водяной пар с нулевым содержанием углекислого газа. В остальном здесь все практически так же, как в обычном электромобиле, но в случае с водородной установкой используется куда более компактная батарея – емкость литий-ионного аккумулятора в водородных автомобилях в 10 раз меньше, поскольку он используется только для холодного старта и буферизации энергии, полученной при рекуперативном торможении.

По оценкам Hydrogen council (совет по водородным технологиям), к 2050 году мировой рынок водорода будет составлять порядка 18% от общего спроса на электроэнергию. При этом в транспортном секторе количество легковых автомобилей на водородном топливе составит 400 млн, 15-20 млн грузовых и 5 млн автобусов.

Китай планирует к 2030 году установить 1000 водородных заправочных станций, обслуживающих более 1 млн FCEV.

Так же активно инвестируют в водородную инфраструктуру Южная Корея, ведь всю страну можно пересечь на одном баке водорода.

В следующем году в Токио будет проходить олимпиада, японское правительство пообещало, что вся инфраструктура будет обслуживаться исключительно водородным топливом, уже переданы первые два автобуса на с топливным элементом на борту.

Несмотря на дешевизну ископаемого топлива, многие страны обделены природными ископаемыми, это вынуждает их отказаться от экспортного ископаемого топливо во благо энергетической безопасности страны, тот же водород можно получать дорогим способом электролиза воды - разложением воды на водород и кислород

Так же в мире появляется все больше компаний, которые внедряют водородные технологии в промышленность, и даже в некоторых случаях (Твердооксидные топливные элементы) создаются целые электрические станции, работающие на водородном топливе.

yandex.ru

Водородомобиль Toyota Mirai — первый тест — журнал За рулем

Примеряем будущее за рулем первого серийного автомобиля на топливных элементах. Футуристический седан Toyota Mirai потребляет исключительно водород. В баки моей машины его поместился ровно килограмм. До заправки трип-компьютер обещал 260 км пути, после — 330 км. Но я уверен, что смогу проехать все пятьсот!

23-Toyota-Mirai_zr-12_15

Toyota Mirai. Производство Япония. От 66 000 евро в Германии.

Toyota Mirai. Производство Япония. От 66 000 евро в Германии.

Литр дизеля за один евро? В Гамбурге? Фантастика! Прекрасно помню, что год назад, когда я путешествовал на машине по Европе, солярка была ощутимо дороже. Но вот очередная АЗС — и тоже евро за литр… Просто в Германии, в отличие от России, цены на нефтепродукты оперативно переписывают вслед за ценой на нефть не только в бóльшую сторону, но и в меньшую.

Даже жаль, что ни дизель, ни бензин мне сегодня ни к чему — ведь я веду по окрестностям Гамбурга первый в мире серийный автомобиль на топливных элементах. Для заправки футуристического седана Toyota Mirai требуется исключительно водород.

ПОД ДАВЛЕНИЕМ

Все происходит точь-в‑точь как на обычной АЗС. Через терминал я оплачиваю необходимое количество топлива, присоединяю штекер к заправочной горловине, и в течение трех-четырех минут водород заполняет топливные баки. Это два баллона высокого давления (700 бар) из углепластика с трехслойной структурой: 60‑литровый размещен под задним сиденьем, а другой (62,4 л) — ближе к задней подвеске. Суммарная емкость — пять килограммов водорода.

03-Toyota-Mirai_zr-12_15

Toyota Mirai. Интерьер качественный, воздушный; эргономика, несмотря на экзотическую архитектуру панели, не хворает. Приятно порадовало наличие автодоводчиков всех стекол. И неприятно огорчила задумчивость мультимедиасистемы с сенсорными кнопками.

Toyota Mirai. Интерьер качественный, воздушный; эргономика, несмотря на экзотическую архитектуру панели, не хворает. Приятно порадовало наличие автодоводчиков всех стекол. И неприятно огорчила задумчивость мультимедиасистемы с сенсорными кнопками.

Материалы по теме

Материалы по теме

На всю Германию — лишь девятнадцать общедоступных водородных заправок. По заверению производителя, Toyota Mirai на полных баках может проехать 500 км, а тестовый маршрут проложен так, что в поле я не встану; но очевидно, что нынешняя водородная инфраструктура пока не в состоянии обеспечить комфортную жизнь владельцам водородомобилей.

Ситуация изменится к 2023 году, когда число водородных заправок в Германии перевалит за четыре сотни. Стоимость проекта — свыше 400 миллионов евро, по миллиону на каждую АЗС. Внушительную часть средств инвестируют фирмы Toyota, Honda, BMW, Volkswagen и Daimler.

В Японии к концу года будет функционировать около восьмидесяти водородных АЗС, тоже при участии автопроизводителей. В США — около тридцати.

Я же перехожу от 

www.zr.ru

принцип работы машин на водородном топливе, плюсы и минусы

Водородный двигатель в последние годы всё чаще рассматривается многими производителями транспортных средств в качестве достойной альтернативы традиционным ДВС, работа которых обеспечивается «чёрным золотом». Перспектива использовать такой двигатель в будущих десятилетиях была оценена ещё во времена блокады Ленинграда, когда Борис Шелищ сумел разработать, а также внедрить метод перевода бензиновых двигателей на использование водородного топлива. Однако до настоящего времени предпочтение отдавалось исключительно конкурирующим технологиям, к числу которых можно отнести электромобиль и гибридный автомобиль.

Принцип работы

Устройство водородных двигателей не отличается особой сложностью. Главным отличием является способ подачи и воспламенения смесей при полном сохранении основного принципа преобразования. При этом на фоне традиционного бензина и дизеля, водородное топливо обеспечивает мгновенную скорость реакции даже в условиях незначительного уровня давления внутри топливной системы. Для образования смеси участие воздуха не является необходимым, а остающийся в камере сгорания пар, после прохождения сквозь радиатор и конденсации, снова становится Н2О.

Безусловно, топливный элемент в данном варианте предполагает использование специального электролизера, обеспечивающего выделение достаточного количества водорода для участия в возобновлённом гидролизе с кислородом. Основная проблема состоит в том, что в современных реалиях данный вариант практически невыполним. Современные технологии не гарантируют стабильность функционирования и беспроблемный запуск мотора при отсутствии атмосферного воздуха.

Особенности гибридных конструкций

Характеристики, которыми обладает водородное топливо, активно использовались многими конструкторами с целью создания уникального гидродвигателя внутреннего сгорания. Например, разработанный В.С. Кащеевым метод – это принципиально иная установка, имеющая не только традиционный подающий воздух впускной клапан и выпускное устройство отвода выхлопных газов, но и отдельный клапанный механизм подачи водорода, а также свечу зажигания в головке блоков цилиндров.

Несмотря на некоторые принципиальные отличия, механизм работы остаётся неизменным, поэтому любые гибридные силовые агрегаты принято считать переходной стадией от применения дизеля и бензина к использованию водородного топлива. Благодаря высоким показателям КПД, лёгкое химическое вещество вводится в состав топливно-воздушных смесей, что значительно повышает степень сжатия, а также снижает токсичность выхлопов. Кроме этого, взаимодействие кислорода с водородом сопровождается выделением достаточного количества энергии, которая нужна автомобильным электродвигателям.

Водородные топливные элементы

Водородный топливный элемент, с конструктивной точки зрения, является своеобразной аккумуляторной «батарейкой» с высокими показателями коэффициента полезного действия (порядка 50%). Внутри корпуса протекают физико-химических процессы с участием специальной мембраны, отвечающей за проведение протонов. Посредством такого мембранного элемента происходит деление корпуса на пару частей – резервуар с анодом и камеру с катодом.

Камера с анодом заполняется водородом, а в катодную часть поступает атмосферный кислород. В качестве покрытия электродов используются дорогостоящие редкоземельные металлы, включая платину. Особенности поверхности обеспечивают взаимодействие с водородными молекулами, в результате чего происходит потеря электронов. Одномоментно с этим процессом выполняется прохождение протонов сквозь мембрану к катоду. Благодаря такому воздействию катализатора протоны соединяются с поступившими извне электронами.

Результат произошедшей реакции – образование воды и поступление электронов из анодной камеры в электрическую цепь, подключённую к силовому агрегату. Таким образом, двигатель приводится в движение водородным топливным элементом и может проработать порядка 200-250 км. Тормозит применение такой технологии и серийный выпуск автомобилей с водородными двигателями необходимость использовать в конструкции элементов платину, палладий и другие дорогостоящие металлы.

Преимущества и недостатки

С практической точки зрения все плюсы и минусы водородных силовых агрегатов в условиях современного автомобилестроения очевидны и обусловлены их техническими характеристиками. К неоспоримым преимуществам относятся следующие факторы:

  • абсолютно бесшумная работа;
  • высокие показатели экологической чистоты;
  • очень достойный коэффициент полезного действия;
  • меньшее количество токсичных выбросов в атмосферу;
  • гарантированно высокая мощность и производительность;
  • конструктивная простота и отсутствие ненадёжных систем топливной подачи.

Среди значимых недостатков можно выделить сложность и дороговизну получения топлива в промышленных объёмах, отсутствие регламента хранения и транспортирования. Вес машины естественным образом заметно увеличится, что обусловлено необходимостью установки на транспортное средство тяжёлых токовых преобразователей и мощных аккумуляторных батарей.

Специалисты отмечают также высокую опасность использования водорода, связанную с риском появления взрыво- и пожароопасной ситуации при взаимодействии с разогретым выпускным коллектором и моторными маслами. Сегодня цена одного килограмма водорода составляет порядка 8-9 американских долларов, поэтому при расходе 1,2-1,3 кг на 100 км, средняя стоимость такой поездки вполне сопоставима с эксплуатацией традиционного бензинового автомобиля.

Модели с водородным двигателем

Работы по разработке и производству реально функционирующего прототипа инновационного автомобиля обходятся примерно в миллион долларов. Самые крупные автомобильные концерны располагают такими суммами, но крайне редко считают вложение средств в подобные проекты высокодоходным мероприятием.

Honda FCX Clarity

Модель имеет силовую установку в виде водородных топливных элементов. Лизинговые продажи стартовали в Америке 11 лет назад, а для заправки топливом разрабатывалась очень компактная по размерам энергетическая станция (Home Energy Station). Подсистема разгона и торможения в этом автомобиле оснащена эксклюзивным ионистором в виде супер-конденсатора без наличия традиционных «обкладок». Запас хода на одном заряде составляет 700 км. Розничная цена модели – почти 63 тысячи американских долларов.

Hyundai Tucson/ix35 FCEV

Внедорожник класса «К1» был запущен в серийное производство шесть лет назад. Модель, занявшая лидирующие позиции в области использования водородного топлива, отличается компактными размерами. Автомобиль оснащён силовой установкой, представленной двумя газовыми баллонами, которые заполняются сжатым водородом под давлением 700 атм. В динамике эта машина очень хороша, но оптимальный вариант – городской цикл езды.

Hyundai Nexo

Южнокорейская модель второго поколения водородных кроссоверов отличается не только новой платформой, но также лёгким кузовом, аккумуляторной батареей в багажнике и улучшенным строением топливных элементов. Объём трёх одинаковых по размерам баков составляет 52,2 л водорода. Модель была протестирована за Полярным кругом, где довольно легко подтвердила свою работоспособность в суровых климатических условиях.

Toyota Mirai FCV

Японский водородный экомобиль – это новая эра автомобилестроения. Для четырёхдверного седана характерно наличие заметно улучшенной силовой установки, модернизированных и усовершенствованных агрегатов. В модели Тойота Мирай установлены высокоэффективные водородные топливные элементы FC stack и синхронный электрический двигатель переменного тока. Запас хода на одном заряде двух заправочных баллонов составляет 650 км.

Перспективы водородных ДВС

На данный момент к категории водородных моторов относятся как силовые агрегаты, которые функционируют на водороде, так и двигатели, использующие в работе водородные топливные ячейки. По мнению специалистов, водородные двигатели сегодня следует рассматривать, как единственно приемлемую с экологической точки зрения энергию.

Перед учёными в настоящее время стоит задача разработки наиболее приемлемой инфраструктуры, а также определения высокоэффективного способа добычи нестандартного вида топлива. Немаловажное значение придаётся подготовке документации, регламентирующей вопросы транспортирования, хранения и эксплуатации водорода.

voditelauto.ru

Есть ли будущее у автомобилей на водородном топливе?

В 1937 году крушение дирижабля Гинденбург перечеркнуло будущее водорода для использования в транспортных целях. Но теперь, спустя многие десятилетия, вновь начал просыпаться интерес к водороду, особенно в контексте его использования в автомобилях. В этой статье мы поговорим не о не о недостатках водородных автомобилей, а об их устройстве и темпах создания условий для эксплуатации подобного транспорта.

Источники водорода

Идея перевести наземный и воздушный транспорт на водородное топливо не нова, первые разработки в этом направлении велись еще в XIX веке, но из-за слаборазвитых технологий, отсутствия острой проблемы глобального потепления и недостаточной автомобилизации, человечество только сейчас заинтересовалось возможностью использования водорода в качестве основного топлива для различных средств передвижения.

Все было бы хорошо, если по аналогии с нефтью и газом, водород встречался бы в природе в чистом виде. Парадокс в том, что хотя водород и является самым распространенным химическим элементом во всей Вселенной, в природе не существует открытых месторождений, из которых можно было бы беспрепятственно добывать водород. В то время как углеродное топливо относительно легко добыть и оно нуждается в минимальной обработке, с водородом все гораздо сложнее: в мире есть только два более-менее эффективных способа производства H2: “оторвать” водород от молекул кислорода либо отделить его от молекул углерода.

Существующие модели автомобилей и принцип их работы

Машины, работающие на водороде, называют Fuel Cell Electric Vehicles или FCEV, на автомобильном рынке уже представлено несколько подобных решений. О конкретных моделях речь пойдет немного позже, сперва следует остановиться на устройстве автомобильной водородной установки. Она имеет так называемый топливный элемент (электрохимический генератор), являющийся своеобразной “батарейкой”, в которую поступает водород, после чего он окисляется и в результате на выходе мы имеем чистый водяной пар с нулевым содержанием углекислого газа. В остальном здесь все практически так же, как в обычном электромобиле, но в случае с водородной установкой используется куда более компактная батарея – емкость литий-ионного аккумулятора в водородных автомобилях в 10 раз меньше, поскольку он используется только для холодного старта и буферизации энергии, полученной при рекуперативном торможении.

Батарея необходима и потому, что главный источник энергии – блок топливных элементов – переходит в рабочее состояние не сразу, а спустя какое-то время после старта. Первым прототипам требовалось до полутора часов, чтобы начать превращать водород и кислород в водяной пар и электроэнергию. Современные же автомобили на водородной тяге выходят в рабочий режим менее чем за 2 минуты, однако прогрев до температуры, при которой КПД установки доходит до 70-90%, занимает от 15 минут до часа в зависимости от температуры окружающей среды. Водород общей массой 5 кг хранится в специальных баллонах, на заправку которых уходит в среднем 3 минуты. Дальность хода на таком объеме топлива достигает 500 км.

Желающие приобрести FCEV сегодня могут выбрать Toyota Mirai, (58 000 долларов) либо Honda FCX Clarity (от 33 400 долларов). Впрочем, это только самые распространенные модели, помимо них выпускаются ограниченные серии Mazda RX-8 Hydrogen, Audi A7 h-tron, Hyundai Tucson FCEV, BMW Hydrogen 7, Ford E-450 и даже автобусы Man Lion City Bus. В России эти автомобили встречаются крайне редко, в свободной продаже их можно найти в США, западной Европе и некоторых азиатских странах.

Реклама на Компьютерре

Экологически грязное производство

Большая часть производимого водорода добывается с помощью паровой конверсии метана – это самый быстрый и дешевый способ, в ходе которого молекулы метана многократно подвергаются воздействию высоких температур и катализаторов, в результате чего они распадаются на угарный газ и водород. Поскольку для такого производства необходимо использовать ископаемые виды топлива, мы все так же загрязняем атмосферу выбросами CO2, как и в случае с дилеммой производства энергии для электромобилей на старых дымящих ТЭС.

Для производства водорода также используется метод электролиза, знакомого многим еще со школьной скамьи: в этом случае нет ни нефти, ни газа – на кислород и водород распадается обычная вода путем воздействия на нее довольно большого количества электроэнергии. Казалось бы, с электролизом все должно быть хорошо, но, как уже говорилось выше, основная часть производимого сегодня электричества, генерируется “грязными” теплоэлектростанциями, массово сжигающими уголь, природный газ и мазут.

Немного цифр

По оценкам Hydrogen council (совет по водородным технологиям), к 2050 году мировой рынок водорода будет составлять порядка $2.5 трлн или 18% от общего спроса на электроэнергию, что позволит сократить объемы вредных выбросов в атмосферу на 6 гигатонн в год. При этом в транспортном секторе количество легковых автомобилей на водородном топливе составит 400 млн, 15-20 млн грузовых и 5 млн автобусов. Чтобы достичь этих показателей необходимо до 2030 ежегодно инвестировать $20-25 млрд в развитие водородной отрасли. Для сравнения, даже в период кризиса инвестиции в нефтегазовую отрасль составляли около 60 миллиардов долларов. В данный момент 20 стран, включая США, Японию, Германию, Южную Корею и Китай, активно занимаются развитием рынка энергетического водорода, выстраивая партнерские связи между государственным и частным секторами.

Китай планирует к 2030 году установить 1000 водородных заправочных станций, обслуживающих более 1 млн FCEV. Кроме того, к 2025 ныне быстрорастущий город Ухань (население – около 11 млн человек) должен стать основным водородным хабом страны, до 2020 там построят 20 ВЗС, которыми будут пользоваться три тысячи “водородомобилей”. К 2025 году производством водорода в той или иной степени займутся все топливные предприятия города, некоторые из них переоборудуют для работы с одним только водородом, а количество водородных заправочных станций к этому моменту может составить до 100 штук. Для осуществления задуманного, китайцам потребуется выделить $1.7 млрд инвестиций.

В Южной Корее по состоянию на 2018 год действовало всего 12 ВЗС, но за счет небольшой площади государства, любой водитель может пересечь его на одном баке водородного топлива. Впрочем, корейское Министерство Промышленности уже объявило о выделении $2.3 млрд инвестиций, которые пойдут на постройку 310 ВЗС по всей стране к 2022. Правительство Южной Кореи также намерено оказывать финансовую помощь предприятиям, разрабатывающим оборудование для водородных автомобилей, а благодаря налоговым льготам для водителей, на дорогах появятся 16 000 FCEV.

Как и говорилось в начале статьи, наибольшую заинтересованность к водороду проявляет Япония. По данным Hydrogen Analysis Resource Center, в середине 2018 на территории Страны восходящего солнца располагалось 94 ВЗС (это самый высокий показатель во всем мире, на втором месте Германия – 44 ВЗС). Министерство энергетики, торговли и промышленности Японии (METI) разработало долгосрочную стратегию, нацеленную на ускоренное внедрение легковых автомобилей и общественного транспорта на водородных топливных элементах, и расширение сети установок для производства энергии из водорода. Глобальная задача METI состоит не только в снижении количества вредных выбросов транспорта и промышленности в больших городах, но и в уменьшении зависимости от импортируемых ископаемых видов топлива. Если говорить более конкретно, то Япония планирует увеличить потребление водорода с предполагаемых 4000 тонн в 2020 году до 300 000 тонн в 2030 и 10-15 млн тонн в 2050. Что касается количества FCEV, к 2020 году в Японии их число достигнет 40 000, 180 000 – в 2025 и около 800 000 штук к 2030. Весь этот автопарк будут обслуживать 160 ВЗС уже в 2020 и 320 ВЗС в 2025. Помимо всего прочего, к 2030 году японцы введут в эксплуатация 1200 автобусов на водороде. Однако Япония при всем своем желании не сможет обеспечить себя водородом в таких объемах, поэтому METI не исключает возможность перехода страны на водород с помощью импортных поставок из Брунея, Африки и Австралии. Для этого крупные японские компании (например, Kawasaki Heavy Industries и Chiyoda Corporation) оказывают финансовую поддержку проектам по производству водорода в Австралии и Брунее.

Западная Европа хоть и отстает от Азии по темпам освоения технологий водородной энергетики, не намерена быть среди догоняющих: так, если 5 лет назад количество автобусов на водороде равнялось тридцати, то сейчас их уже 91 – да, в мировых масштабах число незначительное, но учитывая сложность создания абсолютно новой инфраструктуры ВЗС, прогресс налицо. В отличие от Азии, имеющей какой-никакой опыт работы с водородом, европейские государства делают первые шаги по внедрению водородной энергетики. Доказательством могут служить программы вроде HyFive или h3ME, в рамках которых строятся новые заправочные станции и вводится в эксплуатацию все больше легковых автомобилей на водороде. Самыми активными странами в этом вопросе являются Германия, где сосредоточены ведущие мировые автопроизводители и Дания, чье правительство готовится производить водород путем электролиза морской воды с помощью чистой энергии, полученной от ВИЭ. Благодаря развитию HyFive и h3ME у жителей Европы в обозримом будущем появится возможность путешествовать между странами без дозаправки. США лишний раз не стоит упоминать, поскольку острый интерес к водороду там проявляет лишь Калифорния.

В итоге

Несмотря на сложности создания сети ВЗС и затратное производство, “скачущие” цены на нефть и газ рано или поздно вынудят человечество отказаться от ископаемых источников энергии в пользу водородного топлива. Конечно, этот процесс займет не одно десятилетие, но рано или поздно безотходная добыча чистого водорода будет налажена, запасы нефти и газа иссякнут, а климат не сможет и дальше терпеть миллионы чадящих автомобилей.

www.computerra.ru


Смотрите также

КОНТАКТЫ

Екатеринбург

ул. Онуфриева 55

тел: +7 (912) 299 47 31

        +7 (912) 280 78 38

e-mail: [email protected]

 

Время работы:

12.00-20.00

Выходные:

понедельник

воскресенье

Рекомендуем позвонить

перед приездом!!!